精英家教網 > 高中數學 > 題目詳情

已知橢圓C的焦點坐標分別為F1(-2,0),F2(2,0),且長軸與焦距的等比中項為

(1)求橢圓C的標準方程;

(2)已知A(-3,0),B(3,0),P是橢圓C上異于A、B的任意一點,直線AP、BP分別交y軸于M、N,求的值;

(3)在(2)的條件下,若G(s,0),H(k,0)且,分別以OG、OH為邊作正方形,求此兩正方形的面積和的最小值,并求出取得最小值時的G、H點坐標.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓E的焦點坐標為F1(-2,0),點M(-2,
2
)在橢圓E上.
(1)求橢圓E的方程;
(2)設Q(1,0),過Q點引直線l與橢圓E交于A,B兩點,求線段AB中點P的軌跡方程;
(3)O為坐標原點,⊙O的任意一條切線與橢圓E有兩個交點C,D且
OC
OD
,求⊙O的半徑.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的焦點F1(-2
2
,0)和F22
2
,0),長軸長6,設直線y=x+2交橢圓C于A、B兩點,求線段AB的中點坐標
(-
9
5
,
1
5
(-
9
5
,
1
5

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•虹口區(qū)一模)已知橢圓P的焦點坐標為
0,±1
,長軸等于焦距的2倍.
(1)求橢圓P的方程;
(2)矩形ABCD的邊AB在y軸上,點C、D落在橢圓P上,求矩形繞y軸旋轉一周后所得圓柱體側面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C兩焦點坐標分別為F1(-
2
,0)
,F2(
2
,0)
,一個頂點為A(0,-1).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)是否存在斜率為k(k≠0)的直線l,使直線l與橢圓C交于不同的兩點M,N,滿足|AM|=|AN|.若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案