已知函數(shù)f(x)=2sin(2x-
π
3
).
(Ⅰ)請(qǐng)你用“五點(diǎn)法”畫(huà)出函數(shù)f(x)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的圖象;
(Ⅱ)若x∈[
π
2
,π]時(shí),求函數(shù)f(x)的最值以及取得最值時(shí)的x的值.
考點(diǎn):五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象,正弦函數(shù)的定義域和值域
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)根據(jù)“五點(diǎn)法”即可畫(huà)出函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖;
(Ⅱ)根據(jù)三角函數(shù)圖象分析函數(shù)的單調(diào)性,進(jìn)而可得函數(shù)f(x)的最值以及取得最值時(shí)的x的值.
解答: 解(Ⅰ):①列表:
2x-
π
3
0
π
2
π
2
x
π
6
5
12
3
11π
12
6
y020-20
②在坐標(biāo)系中描出以上五點(diǎn)
③用光滑的曲線連接這五點(diǎn),得所要求作的函數(shù)圖象如下所示.

(Ⅱ)由圖可知:當(dāng)x∈[
π
2
,
11π
12
]時(shí),函數(shù)為減函數(shù),當(dāng)x∈[
11π
12
,π]時(shí),函數(shù)為增函數(shù),
故當(dāng)x=
11π
12
時(shí),函數(shù)取最小值-2,當(dāng)x=
π
2
時(shí),函數(shù)取最大值
3
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),要求熟練掌握五點(diǎn)法作圖以及函數(shù)圖象之間的變化關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx.
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若a≥2-4ln2,求證:函數(shù)f(x)在(0,
1
2
)上無(wú)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心為坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F(1,0),短軸長(zhǎng)為2.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx+b與橢圓C交于A,B兩點(diǎn),且OA⊥OB,求證直線l與以原點(diǎn)為圓心的定圓相切,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x•ex的單調(diào)遞減區(qū)間為
 
,其最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2n
1+x2
-x在(0,+∞)上的最小值是an(n∈N+))
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)證明:
1
a12
+
1
a22
+
1
a32
+…+
1
an2
1
2

(3)在點(diǎn)列An(2n,an)….中是否存在兩點(diǎn)Ai,Aj 其中i,j∈N+,使直線AiAj的斜率為1,若存在,求出所有數(shù)對(duì)i,j,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=3t+2
y=4t
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0.點(diǎn)P在直線l上,點(diǎn)Q在曲線C上,求PQ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}滿足a3=5,a10=-9.求{an}的前n項(xiàng)和Sn及使得Sn最大時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線C:
x2
4
-y2=1的離心率為
 
,其漸近線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案