A. | [${\frac{{\sqrt{3}}}{2}$,1) | B. | [$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | C. | [$\frac{1}{2}$,1) | D. | [$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$] |
分析 先根據(jù)橢圓定義得到|PF1|=a+ex1,|PF2|=a-ex1,再利用余弦定理,求出x12=$\frac{4{c}^{2}-3{a}^{2}}{{e}^{2}}$,利用橢圓的范圍列出不等式求出離心率的范圍.
解答 解:設(shè),P(x1,y1),F(xiàn)1(-c,0),F(xiàn)2(c,0),c>0,
則|PF1|=a+ex1,|PF2|=a-ex1.
在△PF1F2中,由余弦定理得 cos120°=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}|•|P{F}_{2}|}$
=$\frac{(a+e{x}_{1})^{2}+(a-e{x}_{1})^{2}-4{c}^{2}}{2(a+e{x}_{1})(a-e{x}_{1})}$=-$\frac{1}{2}$,
解得 x12=$\frac{4{c}^{2}-3{a}^{2}}{{e}^{2}}$.
∵x12∈[0,a2],
∴0≤$\frac{4{c}^{2}-3{a}^{2}}{{e}^{2}}$≤a2,
即4c2-3a2≥0.且e2<1,
∴e=$\frac{c}{a}$≥$\frac{\sqrt{3}}{2}$.
故橢圓離心率的取范圍是[$\frac{\sqrt{3}}{2}$,1).
故選A.
點評 本題主要考查了橢圓的應(yīng)用.當(dāng)P點在短軸的端點時∠F1PF2值最大,這個結(jié)論可以記住它.在做選擇題和填空題的時候直接拿來解決這一類的問題.
科目:填空題
來源: 題型:查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{3}$ | B. | $\frac{7}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com