(本小題滿分12分)對于定義域?yàn)镈的函數(shù),若同時(shí)滿足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[],使在[]上的值域?yàn)閇];那么把)叫閉函數(shù)。(1)求閉函數(shù)符合條件②的區(qū)間[];

(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;

(3)判斷函數(shù)是否為閉函數(shù)?若是閉函數(shù),求實(shí)數(shù)的取值范圍。

 

【答案】

(1) [-1,1]   

(2)函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)。

(3)。

【解析】本題主要考查通過給定的新定義來解題.這種題重要考查學(xué)生的接受新內(nèi)容的能力

(1)由題意,y=-x3在[a,b]上遞減,則得到a,b的關(guān)系式,進(jìn)而求解得到a,b的值。

(2)取x1=1,x2=10,則f(x1)==f(x2),取x1=, x2=, f(x1)=f(x2),即f(x)不是(0,+∞)上的增函數(shù).所以,函數(shù)在定義域內(nèi)既不單調(diào)遞增也不單調(diào)遞減,從而該函數(shù)不是閉函數(shù).即f(x)不是(0,+∞)上的減函數(shù).

(3)根據(jù)是閉函數(shù),得到a,b的關(guān)系式,結(jié)合韋達(dá)定理得到結(jié)論。

解:(1)由題意,在[]上遞減,則解得所以,所求的區(qū)間為[-1,1]   

(2)取,即不是上的減函數(shù)。

,即不是上的增函數(shù)

所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)。

(3)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域?yàn)閇],即,為方程的兩個(gè)實(shí)根,即方程有兩個(gè)不等的實(shí)根。當(dāng)時(shí),有,解得。當(dāng)時(shí),有,無解。

綜上所述,。----------13分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案