A. | 10+5$\sqrt{3}$ | B. | 15 | C. | 10+2$\sqrt{3}$ | D. | 20 |
分析 先由條件求得 cosC=-$\frac{1}{2}$,再由余弦定理可得 c2=(a-5)2+75,利用二次函數(shù)的性質求得c的最小值,即可求得△ABC周長a+b+c 的最小值.
解答 解:解方程2x2-3x-2=0可得x=2,或 x=-$\frac{1}{2}$.
∵在△ABC中,a+b=10,cosC是方程2x2-3x-2=0的一個根,
∴cosC=-$\frac{1}{2}$.
由余弦定理可得 c2=a2+b2-2ab•cosC=(a+b)2-ab,
∴c2=(a-5)2+75.
故當a=5時,c最小為$\sqrt{75}$=5$\sqrt{3}$,
故△ABC周長a+b+c 的最小值為 10+5$\sqrt{3}$.
故選:A.
點評 本題主要考查一元二次方程的解法、二次函數(shù)的性質以及余弦定理的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [${\frac{1}{2}$,2] | B. | [0,1] | C. | [1,2] | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com