已知集合A=,B=,則下列命題中正確的是(   )
A.B.
C.D.
B

:∵集合A={直線},B={平面},C=A∪B,若a∈A,b∈B,c∈C,
可得a是直線,b是平面,c可能是直線也可能是平面
若直線a⊥平面b且直線c⊥平面b,則直線a∥直線c,
若直線a⊥平面b且平面c⊥平面b,則直線a∥平面c或直線a?平面c,故A錯誤;
若直線a∥平面b且直線c∥平面b,則平面a與直線c的可能平行,可能相交,也可能異面,故B錯誤;
若直線a⊥平面b且直線c∥平面b,則直線a⊥直線c,
若直線a⊥平面b且平面c∥平面b,則直線a⊥平面c,故C正確;
若直線a∥平面b且直線c⊥平面b,則直線a⊥直線c,
若直線a∥平面b且平面c⊥平面b,則直線a與平面c關系不確定,故D錯誤;
故選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

(本題滿分14分).如圖,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,
EF∥AC, EF=, CE=1
(1)求證:AF∥面BDE
(2)求CF與面DCE所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體中,分別為 棱,上的點. 已知下列判斷:

平面;②在側面上 的正投影是面積為定值的三角形;③在平面內總存在與平面平行的直線;④平 面與平面所成的二面角(銳角)的大小與點的位置有關,與點的位置無關.
其中正確判斷的個數(shù)有
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分分)在邊長為的正方體中,
的中點,的中點,
(1)求證:平面;
(2)求點到平面的距離;
(3)求二面角的平面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題14分)已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5)

⑴求以向量為一組鄰邊的平行四邊形的面積S;
⑵若向量分別與向量垂直,且,求向量的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,在直角梯形ABCD中,AB//CD,E為CD上一點,且DE=4,過E作EF//AD交BC于F現(xiàn)將沿EF折到使,如圖2。

(I)求證:PE⊥平面ADP;
(II)求異面直線BD與PF所成角的余弦值;
(III)在線段PF上是否存在一點M,使DM與平在ADP所成的角為?若存在,確定點M的位置;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是平面,是直線,且,平面,則與平面的位置關系是 
A.平面B.平面
C.平面D.與平面相交但不垂直

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知一四棱錐的三視圖,E是側棱PC上的動點.
(1)求四棱錐的體積;
(2)若E點分PC為PE:EC=2:1,求點P到平面BDE的距離;
(3)若E點為PC的中點,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若球O的球面上共有三點A、B、C,其中任意兩點間的球面距離都等于大圓周長的經(jīng)過A、B、C這三點的小圓周長為,則球O的體積為       .

查看答案和解析>>

同步練習冊答案