精英家教網 > 高中數學 > 題目詳情
如圖,ABCD-A1B1C1D1為正方體,下面結論錯誤的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.異面直線AD與CB1角為60°
D
解:A中因為BD∥B1D1,正確;B中因為AC⊥BD,由三垂線定理知正確;
C中有三垂線定理可知AC1⊥B1D1,AC1⊥B1C,故正確;
D中顯然異面直線AD與CB1所成的角為45°
故選D
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,底面為梯形,,,,點在棱上,且

(1)求證:平面⊥平面;
(2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點E在棱PA上,且PE=2EA。
(1)求直線PC與平面PAD所成角的余弦值;(6分)
(2)求證:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐的底面為矩形,且,
,,(Ⅰ)平面與平面是否垂直?并說明理由;(Ⅱ)求直線與平面所成角的正弦值. 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

、、表示三條不同的直線,表示平面,給出下列命題:
①若,,則;②若,,則
③若,,則;④若,,則;則其中正確的是(   )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

是兩條不同的直線,是三個不同的平面,給出下列四個命題:
①若,,則   ②若,,則
③若,,則  ④若,,則
其中正確命題的序號是 _______

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線m、n和平面α、β,若α⊥β,α∩β=m,nα,要使n⊥β,則應增加的條件是(   )
A.m∥nB.n⊥m    C.n∥αD.n⊥α

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在正方體中,點的中點.
(1) 求所成的角的余弦值;
(2) 求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知矩形ABCD所在平面,PA=AD=,E為線段PD上一點,G為線段PC的中點.
(1)當E為PD的中點時,求證:
(2)當時,求證:BG//平面AEC.

查看答案和解析>>

同步練習冊答案