分析 根據正弦定理結合兩角和差的正弦公式進行化簡求出cosB的值,結合向量數(shù)量積以及三角形的面積公式進行求解即可.
解答 解:∵bcosC=3acosB-ccosB,
∴sinBcosC=3sinAcosB-sinCcosB,
即sinBcosC+sinCcosB=3sinAcosB,
即sin(B+C)=3sinAcosB,
即sinA=3sinAcosB,
則cosB=$\frac{1}{3}$,sinB=${\sqrt{1-(\frac{1}{3})^{2}}}^{\;}$=$\frac{2\sqrt{2}}{3}$,
∵$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,
∴|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|cosB=2
即$\frac{1}{3}$ac=2,ac=6,
則△ABC的面積為S=$\frac{1}{2}$acsinB=$\frac{1}{2}×6×$$\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$,
故答案為:2$\sqrt{2}$.
點評 本題主要考查三角形面積的計算,利用正弦定理以及向量數(shù)量積應用是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $\frac{10}{3}$ | C. | $\sqrt{10}$ | D. | $\frac{2\sqrt{7}+5}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com