1.已知集合M={1,2,m2-3m-1},N={-1,3},M∩N={3},求m.

分析 利用交集,推出方程,然后求解即可.

解答 解:集合M={1,2,m2-3m-1},N={-1,3},M∩N={3},
可得m2-3m-1=3,即m2-3m-4=0,解得m=-1或m=4,
故答案為:-1或m=4

點評 本題考查集合的基本運算,交集的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.sin(α+$\frac{π}{6}$)≠cos(β+$\frac{π}{6}$)是α≠β的( 。
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=x2+ax-lnx.
(1)若a=1,試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)f(x)在[1,2]上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,值域為(0,+∞)的函數(shù)是(  )
A.y=3${\;}^{\frac{2}{x}}$B.y=$\sqrt{{2}^{x}-1}$C.y=$\sqrt{{2}^{x}+1}$D.y=($\frac{1}{2}$)2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.化簡:$\frac{1}{lo{g}_{3}x}+\frac{1}{lo{g}_{4}x}+\frac{1}{lo{g}_{5}x}$=( 。
A.$\frac{1}{lo{g}_{60}x}$B.$\frac{1}{lo{g}_{3}x•lo{g}_{4}x•lo{g}_{5}x}$
C.$\frac{1}{lo{g}_{x}60}$D.$\frac{12}{lo{g}_{3}x+lo{g}_{4}x+lo{g}_{5}x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=2x+2-3•4x在[-1,0]上的最大值是$\frac{4}{3}$,最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=$\frac{k}{x}$+2(k∈R),若f(lg2)=0,則f(lg$\frac{1}{2}$)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=|x-1|和g(x)=x(4-x)的單調(diào)遞增區(qū)間分別是( 。
A.(-∞,1]和(-∞,2]B.[1,+∞)和(-∞,2]C.(-∞,1]和[2,+∞)D.[1,+∞)和[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列各代數(shù)式中最小值是2的是( 。
A.x+$\frac{1}{x}$B.x2+2+$\frac{1}{{x}^{2}+2}$C.$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$D.x+2$\sqrt{x}$+3

查看答案和解析>>

同步練習(xí)冊答案