19.已知a>b>0,則下列結(jié)論中不正確的是( 。
A.$\frac{1}{a}$<$\frac{1}$B.$\sqrt{\frac{{a}^{2}+^{2}}{2}}$>$\frac{a+b}{2}$
C.$\root{3}{-a}$<$\root{3}{-b}$D.log0.3$\frac{1}{a}$<log0.3$\frac{1}$

分析 根據(jù)不等式的性質(zhì)判斷A,B,根據(jù)冪函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)判斷C,D

解答 解:由于a>b>0,則$\frac{a}{ab}$>$\frac{ab}$,即$\frac{1}$>$\frac{1}{a}$,故A正確,
根據(jù)基本不等式的性質(zhì)可得,$\sqrt{\frac{{a}^{2}+^{2}}{2}}$>$\frac{a+b}{2}$,故B正確,
函數(shù)y=${x}^{\frac{1}{3}}$為增函數(shù),由于-a<-b,則$\root{3}{-a}$<$\root{3}{-b}$,故C正確,
函數(shù)y=log0.3x為減函數(shù),由于$\frac{1}{a}$<$\frac{1}$,則log0.3$\frac{1}{a}$>log0.3$\frac{1}$,故D不正確.
故選:D.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì)和冪函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=x2+2(a-1)x+2的減區(qū)間為(-∞,4],則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知P(B|A)=$\frac{1}{3}$,P(A)=$\frac{3}{5}$,則P(AB)等于(  )
A.$\frac{1}{5}$B.$\frac{2}{15}$C.$\frac{3}{15}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知直線l:$\left\{\begin{array}{l}{x=t}\\{y=t+1}\end{array}\right.$(t為參數(shù)),圓C:ρ=2cosθ,則圓心C到直線l的距離是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.?dāng)?shù)列{an}的前幾項(xiàng)為$\frac{1}{7}$,$\frac{3}{77}$,$\frac{5}{777}$,$\frac{7}{7777}$…,則其通項(xiàng)公式為(  )
A.an=$\frac{2n}{\frac{7}{9}(1{0}^{n}-1)}$B.an=$\frac{18n-9}{7(1{0}^{n}-1)}$C.an=$\frac{2n-1}{7(1{0}^{n}-1)}$D.an=$\frac{2n-1}{\frac{7}{8}({8}^{n}-1)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.不等式$\frac{1-2x}{3{x}^{2}-4x+7}$≥0的解集為(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.復(fù)數(shù)i-$\frac{1}{i}$=( 。
A.-2iB.$\frac{i}{2}$C.0D.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1.
(1)求函數(shù)f(x)的最小正周期和對(duì)稱中心;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知△ABC是等腰直角三角形,∠A=90°,且$\overrightarrow{AB}=\overrightarrow a+\overrightarrow b$,$\overrightarrow{AC}=\overrightarrow a-\overrightarrow b$,若$\overrightarrow a=(cosθ,sinθ),θ∈R$,則△ABC的面積為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案