8.已知函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1.
(1)求函數(shù)f(x)的最小正周期和對稱中心;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

分析 (1)利用正弦函數(shù)的周期性單調(diào)性,求得函數(shù)的周期;利用正弦函數(shù)的圖象的對稱性求得該函數(shù)的對稱中心.
(2)利用正弦函數(shù)的單調(diào)性求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
(3)利用正弦函數(shù)的定義域和值域,求得函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

解答 解:(1)函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1的最小正周期$\frac{2π}{2}$=π.
由2x+$\frac{π}{4}$=kπ,解得x=$\frac{kπ}{2}$-$\frac{π}{8}$,
∴對稱中心為($\frac{kπ}{2}$-$\frac{π}{8}$,1).
(2)由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,(k∈Z),解得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],(k∈Z).
(3)在區(qū)間[0,$\frac{π}{2}$]上,2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴當(dāng)2x+$\frac{π}{4}$=$\frac{π}{2}$,即x=$\frac{π}{8}$時(shí),函數(shù)f(x)取得最大值$\sqrt{2}$+1,
當(dāng)2x+$\frac{π}{4}$=$\frac{5π}{4}$,即x=$\frac{π}{2}$時(shí),函數(shù)f(x)取得最小值0.

點(diǎn)評 本題主要考查正弦函數(shù)的周期性單調(diào)性、定義域和值域以及它的圖象的對稱性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在(-$\frac{π}{2}$,$\frac{π}{2}$)上隨機(jī)取一個(gè)數(shù)x,則tanx>1的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a>b>0,則下列結(jié)論中不正確的是( 。
A.$\frac{1}{a}$<$\frac{1}$B.$\sqrt{\frac{{a}^{2}+^{2}}{2}}$>$\frac{a+b}{2}$
C.$\root{3}{-a}$<$\root{3}{-b}$D.log0.3$\frac{1}{a}$<log0.3$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c且a=5,sinA=$\frac{\sqrt{5}}{5}$.
( I ) 若cosB=$\frac{3}{5}$,求邊c的值.
(Ⅱ)若S△ABC=$\sqrt{5}$,求周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.sin(-10°)cos160°-sin80°sin(200°)=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a∈R,若對任意的x>0均有(ax-1)(x2-(a+1)x-1)≥0,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在一次飛機(jī)航程中調(diào)查男女乘客的暈機(jī)情況,其中,男性乘客80人中有10人暈機(jī),女性乘客30人中有10人暈機(jī).
(1)寫出2×2列聯(lián)表;
(2)問是否有95%的把握認(rèn)為暈機(jī)與性別是否有關(guān)?
P(K2>k00.500.100.050.0250.0100.0050.001
K00.4452.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓C:x2+y2-2x-1=0,直線l:3x-4y+12=0,圓C上任意一點(diǎn)P到直線l的距離小于2的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式|2x-5|-|x+3|<2的解集為( 。
A.B.(0,$\frac{5}{2}$)C.(0,5)D.(0,10)

查看答案和解析>>

同步練習(xí)冊答案