函數(shù)上是減函數(shù),則的取值范圍為    .

試題分析:時,,要是減函數(shù),需而且.所以的取值范圍為.
點評:要使此分段函數(shù)在上是減函數(shù),需使函數(shù)在每一段上都是減函數(shù),更要注意這是容易遺漏的地方.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
定義在上的偶函數(shù),已知當時的解析式
(Ⅰ)寫出上的解析式;
(Ⅱ)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是偶函數(shù),它在上是減函數(shù),且,則x的取值范圍是(    )
A.(,1)B.(0,)(1,)
C.(,10)D.(0,1)(10,)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡:;
(2)畫出函數(shù)上的圖像;
(3)證明:上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)上的最大值為4,最小值為,
且函數(shù)在R上是增函數(shù),則=        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為定義在上的偶函數(shù),對任意的為增函數(shù),則下列各式成立的是 (     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)設為奇函數(shù),為常數(shù).
(1)求的值;
(2)求的值;
(3)若對于區(qū)間[3,4]上的每一個的值,不等式>恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設奇函數(shù)上為增函數(shù),且,則不等式解集為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)上有定義,對任意實數(shù)和任意實數(shù),都有,若,則函數(shù)的遞減區(qū)間是______.

查看答案和解析>>

同步練習冊答案