若函數(shù)上的最大值為4,最小值為,
且函數(shù)在R上是增函數(shù),則=        

試題分析:當a>1時,有a2=4,a-1=m,此時a=2,m=
,此時g(x)=-x,在R上是增函數(shù),不符合題意;
若0<a<1,則a-1=4,a2=m,a=,此時則m=,那么可知符合題意,故a=,因此答案為。
點評:解決該試題的關(guān)鍵是對a分a>1與0<a<1討論是關(guān)鍵,著重考查分類討論思想的應用。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)證明為R上的單調(diào)遞增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)∈R,函數(shù) =),其中e是自然對數(shù)的底數(shù).
(1)判斷f (x)在R上的單調(diào)性;
(2)當– 1 << 0時,求f (x)在[1,2]上的最小值.
選做題:請考生從給出的3道題中任選一題做答,并在答題卡上把所選題目的題號用2B鉛筆涂黑.注意所做題目的題號必須與所涂的題號一致,在答題卡選答區(qū)域指定位置答題.如果多做,則按所做的第一題計分.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù),則在區(qū)間上的值域為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)。
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)上是減函數(shù),則的取值范圍為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)是在定義域上的單調(diào)遞減函數(shù),則的取值范圍為____     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的單調(diào)遞減區(qū)間為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知函數(shù)
(Ⅰ)判斷f(x)在上的單調(diào)性,并證明你的結(jié)論;
(Ⅱ)若集合A="{y" | y=f(x),},B=[0,1], 試判斷A與B的關(guān)系;

查看答案和解析>>

同步練習冊答案