已知變量x,y滿(mǎn)足,則z=2x+y的最大值是   
【答案】分析:先畫(huà)出滿(mǎn)足約束條件 ,的平面區(qū)域,然后求出目標(biāo)函數(shù)z=2x+y取最大值時(shí)對(duì)應(yīng)的最優(yōu)解點(diǎn)的坐標(biāo),代入目標(biāo)函數(shù)即可求出答案.
解答:解:滿(mǎn)足約束條件 ,的平面區(qū)域如下圖所示:
得A(3,3),
作直線(xiàn)l:2x+y=0
把直線(xiàn)向上平移可得過(guò)點(diǎn)A(3,3)時(shí)2x+y最大,
當(dāng)x=3,y=3時(shí),z=x+2y取最大值9,
故答案為:9.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是簡(jiǎn)單線(xiàn)性規(guī)劃,其中畫(huà)出滿(mǎn)足約束條件的平面區(qū)域,找出目標(biāo)函數(shù)的最優(yōu)解點(diǎn)的坐標(biāo)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足
2x-y≤0
x-3y+5≥0
x≥0
,則z=x-y+5的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足約束條件
2x-y≤0
x-2y+3≥0
x≥0
,則目標(biāo)函數(shù)z=x+y的最大值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足
x-4y+3≤0
3x+5y≤25
x≥1
,設(shè)目標(biāo)函數(shù)z=2x+y,若存在不同的三點(diǎn)(x,y)使目標(biāo)函數(shù)z的值構(gòu)成等比數(shù)列,則以下不可能成為公比的數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x、y滿(mǎn)足條件
x≥1
x-y≤0
x+2y-9≤0
則z=x+y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足約束條件
x+y≤1
2x+y≤2
x≥0,y≥0
,則目標(biāo)函數(shù)z=
1
2
x+y
的最大值為
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案