已知A,B是銳角,求證:
解:左邊=


=右邊,
故原式成立。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•眉山一模)已知A、B、C為三個銳角,且A+B+C=π,若向量
p
=(2sinA-2,cosA+sinA)
與向量
q
=(cosA-sinA,1+sinA)
是共線向量.
(Ⅰ)求角A;
(Ⅱ)求函數(shù)y=2sin2B+cos
C-3B
2
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•梅州一模)設函數(shù)f(x)=sin2x+
3
sinxcosx+
3
2

(1)求f(x)的最小正周期T;
(2)已知a,b,c分別是△ABC的內(nèi)角A,B,C所對的邊,a=2
3
,c=4,A為銳角,且f(A)是函數(shù)f(x)在[0,
π
2
]上的最大值,求A、b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(sinx,-1),向量
n
=(
3
cosx,-
1
2
),函數(shù)f(x)=(
m
+
n
)•
m

(1)求f(x)的最小正周期T;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,A為銳角,a=2
3
,c=4,且f(A)恰是f(x)在[0,
π
2
]上的最大值,求A和b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知在銳角ΔABC中,角所對的邊分別為,且

(I )求角大;

(II)當時,求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點,設直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側。

(1)求證:平面

(2)設二面角的平面角為,若,求線段長的取值范圍。

 


21.已知A,B是橢圓的左,右頂點,,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標之和為2,RQ的中垂線交X軸于T點

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;

(2)如果當時,都有恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省嘉興一中高考適用性試卷(理) 題型:解答題

 

已知A、B是直線圖像的兩個相鄰交點,且

   (I)求的值;

   (II)在銳角中,a,bc分別是角A,B,C的對邊,若

的面積為,求a的值.       

 

 

 

 

 

查看答案和解析>>

同步練習冊答案