13.若直線(xiàn)3x+y-3=0與直線(xiàn)6x+my+1=0平行,則它們之間的距離為( 。
A.$\frac{{\sqrt{10}}}{4}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{7\sqrt{10}}}{10}$D.$\frac{{7\sqrt{10}}}{20}$

分析 通過(guò)直線(xiàn)平行求出m,然后利用平行線(xiàn)之間的距離求出結(jié)果即可.

解答 解:直線(xiàn)3x+y-3=0與直線(xiàn)6x+my+1=0平行,所以m=2,
則直線(xiàn)6x+2y-6=0與直線(xiàn)6x+2y+1=0之間的距離為:$\frac{|-6-1|}{\sqrt{36+4}}$=$\frac{7\sqrt{10}}{20}$.
故選:D.

點(diǎn)評(píng) 本題考查平行線(xiàn)之間的距離的求法,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為( 。
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$),k∈ZB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈Z
C.(k-$\frac{1}{4}$,k-$\frac{3}{4}$),k∈ZD.(2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在直三棱柱ABC-A1B1C1中,AA1=BC=AC=2,AB=2$\sqrt{2}$,D、E分別是的AB,BB1的中點(diǎn).
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)$f(x)=\frac{bx+c}{{a{x^2}+1}}(a,b,c∈R)$是奇函數(shù),且f(-2)≤f(x)≤f(2),則a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x+2y-4≤0\\ 3x+y-3≥0\\ x-y-1≤0\end{array}\right.$,則$z=\frac{y}{x+1}$的最大值為(  )
A.$\frac{9}{7}$B.$\frac{1}{3}$C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知直線(xiàn)$l:mx+y+3m-\sqrt{3}=0$與圓x2+y2=12交于A(yíng),B兩點(diǎn),若$|{AB}|=2\sqrt{3}$,則直線(xiàn)l在x軸上的截距為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,BC=$\sqrt{2}$,又∠BAC=135°,則該三棱錐外接球的表面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.(1)已知函數(shù)f(x)=|x-1|+|x-3|,g(a)=4a-a2,使不等式f(x)>g(a)對(duì)?a∈R恒成立,求實(shí)數(shù)x的取值范圍;
(2)已知a,b,c∈R+,a+b+c=1,求$\sqrt{a}$+$\sqrt{2b}$+$\sqrt{3c}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S6=5S2+18,a3n=3an,數(shù)列{bn}滿(mǎn)足b1•b2•…•bn=4Sn
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=log2bn,且數(shù)列$\left\{{\frac{1}{{{c_n}•{c_{n+1}}}}}\right\}$的前n項(xiàng)和為T(mén)n,求T2016

查看答案和解析>>

同步練習(xí)冊(cè)答案