3.函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為( 。
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$),k∈ZB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈Z
C.(k-$\frac{1}{4}$,k-$\frac{3}{4}$),k∈ZD.(2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z

分析 根據(jù)圖象求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)即可得到結(jié)論.

解答 解:從圖象可以看出:圖象過(guò)相鄰的兩個(gè)零點(diǎn)為($\frac{1}{4}$,0),($\frac{5}{4}$,0),
可得:T=2×$(\frac{5}{4}-\frac{1}{4})$=2,
∴ω=$\frac{2π}{2}$=π,
∴f(x)=cos(πx+φ),將點(diǎn)($\frac{1}{4}$,0)帶入可得:cos($\frac{π}{4}$+φ)=0,
令$\frac{π}{4}$+φ=$\frac{π}{2}$,可得φ=$\frac{π}{4}$,
∴f(x)=cos(πx+$\frac{π}{4}$),
由$2kπ≤πx+\frac{π}{4}≤2kπ+π$,單點(diǎn)遞減(k∈Z),
解得:2k-$\frac{1}{4}$≤x≤2k+$\frac{3}{4}$,k∈Z.
故選D

點(diǎn)評(píng) 本題主要考查三角函數(shù)單調(diào)性的求解,利用圖象求出三角函數(shù)的解析式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合A={x|x2-2x-a2-2a<0},B={y|y=3x-2a,x<2}.
(1)若a=3,求A∪B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題p:?x∈(-2,2),|x-1|+|x+2|≥6,則下列敘述正確的是(  )
A.¬p為:?x∈(-2,2),|x-1|+|x+2|<6B.¬p為:?x∈(-2,2),|x-1|+|x+2|≥6
C.¬p為:?x∈(-∞,-2]∪[2,+∞),|x-1|+|x+2|<6D.¬p為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知命題P:?x>0,總有2x>1,則¬P為( 。
A.?x>0,總有2x≤1B.?x≤0,總有2x≤1C.?x≤0,使得2x≤1D.?x>0,使得2x≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}2x+y-6≤0\\ x-y-1≤0\\ x-1≥0\end{array}\right.$,若z=ax+y僅在點(diǎn)$({\frac{7}{3},\frac{4}{3}})$處取得最大值,則a的取值范圍是( 。
A.(-∞,-1)B.(2,+∞)C.(0,2)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知拋物線(xiàn)y2=2px(p>0)與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)有相同的焦點(diǎn),點(diǎn)A是兩曲線(xiàn)的一個(gè)公共點(diǎn),若|AF|=$\frac{5p}{6}$,則橢圓的離心率為( 。
A.$\frac{-5+\sqrt{51}}{2}$B.$\frac{-5+\sqrt{61}}{6}$C.$\frac{1}{2}$D.$\frac{2\sqrt{2}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知定義在R上的函數(shù)f(x)存在零點(diǎn),且對(duì)任意m,n∈R都滿(mǎn)足f[$\frac{m}{2}$f(m)+f(n)]=f2(m)+2n,則函數(shù)g(x)=|f[f(x)]-4|+log3x-1的零點(diǎn)個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=(lnx-k-1)x(k∈R)
(1)當(dāng)x>1時(shí),求f(x)的單調(diào)區(qū)間和極值.
(2)若對(duì)于任意x∈[e,e2],都有f(x)<4lnx成立,求k的取值范圍.
(3)若x1≠x2,且f(x1)=f(x2),證明:x1x2<e2k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若直線(xiàn)3x+y-3=0與直線(xiàn)6x+my+1=0平行,則它們之間的距離為( 。
A.$\frac{{\sqrt{10}}}{4}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{7\sqrt{10}}}{10}$D.$\frac{{7\sqrt{10}}}{20}$

查看答案和解析>>

同步練習(xí)冊(cè)答案