精英家教網 > 高中數學 > 題目詳情

【題目】大學生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至12月份銷售某種機械配件的銷售量及銷售單價進行了調查,銷售單價和銷售量之間的一組數據如下表所示:

月份

7

8

9

10

11

12

銷售單價(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14

(1)根據7至11月份的數據,求出關于的回歸直線方程;

(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?

(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).

 參考公式:回歸直線方程,其中,參考數據:

【答案】(1)(2)可以認為所得到的回歸直線方程是理想的(3)產品的銷售單價定為7.5元/件時,獲得的利潤最大.

【解析】試題分析:(1)根據回歸直線方程公式,求,則,即可;(2)利用回歸直線方程,估測時, ,計算誤差確定是理想擬合;(3)寫出銷售利潤,利用均值不等式求最大值.

試題解析:(1)因為,

所以,則,

于是關于的回歸直線方程為;

(2)當時, ,則

所以可以認為所得到的回歸直線方程是理想的;

(3)令銷售利潤為,則,

因為,

當且僅當,即時, 取最大值.

所以該產品的銷售單價定為7.5元/件時,獲得的利潤最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校為緩解高三學生的高考壓力,經常舉行一些心理素質綜合能力訓練活動,經過一段時間的訓練后從該年級800名學生中隨機抽取100名學生進行測試,并將其成績分為、、、五個等級,統計數據如圖所示(視頻率為概率),根據以上抽樣調查數據,回答下列問題:

(1)試估算該校高三年級學生獲得成績?yōu)?/span>的人數;

(2)若等級、、、分別對應100分、90分、80分、70分、60分,學校要求平均分達90分以上為“考前心理穩(wěn)定整體過關”,請問該校高三年級目前學生的“考前心理穩(wěn)定整體”是否過關?

(3)為了解心理健康狀態(tài)穩(wěn)定學生的特點,現從、兩種級別中,用分層抽樣的方法抽取11個學生樣本,再從中任意選取3個學生樣本分析,求這3個樣本為級的個數的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一盒中裝有各色球12只,其中5個紅球,4個黑球,2個白球,1個綠球;從中隨機取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣ a(x﹣1)(a∈R).
(1)若a=﹣2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若不等式f(x)<0對任意x∈(1,+∞)恒成立. (ⅰ)求實數a的取值范圍;
(ⅱ)試比較ea2與ae2的大小,并給出證明(e為自然對數的底數,e=2.71828).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線 的焦點也是橢圓 )的一個焦點, 的公共弦長為.

(Ⅰ)求的方程

(Ⅱ)過點的直線相交于, 兩點,與相交于, 兩點,且, 同向.若求直線的斜率;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,求:
(1)若l1⊥l2 , 求m的值;
(2)若l1∥l2 , 求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四面體ABCD中,AB和CD為對棱.設AB=a,CD=b,且異面直線AB與CD間的距離為d,夾角為θ.
(Ⅰ)若θ= ,且棱AB垂直于平面BCD,求四面體ABCD的體積;
(Ⅱ)當θ= 時,證明:四面體ABCD的體積為一定值;
(Ⅲ)求四面體ABCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AB=2BB1=2BC,E為D1C1的中點,連結ED,EC,EB和DB.
(Ⅰ)證明:A1D1∥平面EBC;
(Ⅱ)證明:平面EDB⊥平面EBC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,直線.

(1)若直線與曲線有且僅有一個公共點,求公共點橫坐標的值;

(2)若,求證: .

查看答案和解析>>

同步練習冊答案