設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,Q是拋物線上除頂點(diǎn)外的任意一點(diǎn),直線QO交準(zhǔn)線于P點(diǎn),過Q且平行于拋物線對稱軸的直線交準(zhǔn)線于R點(diǎn),求證:
PF
RF
=0.
分析:先根據(jù)拋物線方程設(shè)出點(diǎn)Q和R,則直線OQ的方程可得,將x=-
p
2
代入即可得交點(diǎn)P的坐標(biāo),同時根據(jù)拋物線方程可知點(diǎn)F的坐標(biāo),進(jìn)而表示出
PF
RF
,求得
PF
RF
=0.
解答:證明:設(shè)Q(
y
2
0
2p
,y0),則R(-
p
2
,y0),
直線OQ的方程為y=
2p
y0
x,
將x=-
p
2
代入上式,得y=-
p2
y0
,
∴P(-
p
2
,-
p2
y0
).又F(
p
2
,0),
PF
=(p,
p2
y0
),
RF
=(p,-y0).
PF
RF
=0.
點(diǎn)評:本題主要考查了拋物線的應(yīng)用,向量的計(jì)算.考查了學(xué)生綜合把握拋物線基礎(chǔ)知識的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且A,B兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),y1>0,y2<0,M是拋物線的準(zhǔn)線上的一點(diǎn),O是坐標(biāo)原點(diǎn).若直線MA,MF,MB的斜率分別記為:KMA=a,KMF=b,KMB=c,(如圖)
(I)若y1y2=-4,求拋物線的方程;
(II)當(dāng)b=2時,求a+c的值;
(III)如果取KMA=2,KMB=-
12
時,判定|∠AMF-∠BMF|和∠MFO的值大小關(guān)系.并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、設(shè)拋物線y2=2px(p>0)上一點(diǎn)A(1,2)到點(diǎn)B(x0,0)的距離等于到直線x=-1的距離,則實(shí)數(shù)x0的值是
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線y2=2px(p>0),弦AB過焦點(diǎn),△ABQ為阿基米德三角形,則△ABQ為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為Q,過Q點(diǎn)的直線l交拋物線于A,B兩點(diǎn).
(1)若直線l的斜率為
2
2
,求證:
FA
FB
=0
;
(2)設(shè)直線FA,F(xiàn)B的斜率分別為k1,k2,求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線y2=2px(p>0),弦AB過焦點(diǎn),△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為(  )
A、
p2
2
B、p2
C、2p2
D、4p2

查看答案和解析>>

同步練習(xí)冊答案