8.如圖,在△ABC中,點D為線段BA延長線上的一點,且∠BDC=∠ACB,⊙O為△ADC的外接圓.
(1)求證:BC是⊙O的切線;
(2)若∠B=45°,∠ACB=60°,AB=3$\sqrt{2}$,求AD的長度.

分析 (1)作直徑CE,連接AE;先證明∠ACB=∠E,再證∠ACB+∠ACE=90°,即∠BCE=90°,即可證出BC為⊙O的切線;
(2)作AF⊥BC于F,先求出BC、BD的長,再求AD的長度.

解答 證明:(1)作直徑CE,連接AE;如圖所示:
∵CE是⊙O的直徑,
∴∠CAE=90°,
∴∠E+∠ACE=90°,
∵∠D=∠ACB,∠D=∠E,
∴∠ACB=∠E,
∴∠ACB+∠ACE=90°,
即∠BCE=90°,
∴BC為⊙O的切線;
解:(2)作AF⊥BC于F,如圖所示:
∵∠B=45°,
∴AF=BF=AB•sin45°=3,
∵∠ACB=60°,
∴EC=$\sqrt{3}$,
∴BC=3+$\sqrt{3}$,
∵BC2=BA•BD,
∴BD=2$\sqrt{2}$+$\sqrt{6}$,
∴AD=$\sqrt{6}$-$\sqrt{2}$.

點評 本題考查了圓周角定理、切線的判定與性質(zhì)、切割線定理以及銳角三角函數(shù);主要考查學生綜合運用定理進行推理和計算的能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+2y-1≥0\\ x-2y+1≥0\\ x≤3\end{array}\right.$,則$\frac{y}{x+2}$的最大值為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.過點P(-3,0)且傾斜角為30°的直線和曲線ρ2cos2θ=4相交于A、B兩點.求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在平面直角坐標系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcos\frac{8π}{3}}\\{y=-4+tsin\frac{8π}{3}}\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為:ρ2-3ρ-4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點,求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在△ABC中,∠BAC的平分線交BC于D,交△ABC的外接圓于E,延長AC交△DCE的外接圓于F
(1)求證:BD=DF;
(2)若AD=3,AE=5,求EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知四棱錐P-ABCD如圖所示,其中平面PAD⊥平面ABCD,PA⊥AD,PA=AB=BC=AC=4,線段AC被線段BD平分.
(I)求證:BD⊥平面PAC;
(Ⅱ)若∠DAC=30°,求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸建立極坐標系.圓C,直線l的極坐標方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}}$)=2$\sqrt{2}$.
(1)求圓C與直線l的直角坐標方程,并求出直線l與圓C的交點的直角坐標;
(2)設(shè)點P為圓C的圓心,點Q為直線l被圓C截得的線段的中點.已知直線PQ的參數(shù)方程為$\left\{\begin{array}{l}x={t^5}+m\\ y=\frac{4}{n}{t^5}-2\end{array}$(t為參數(shù),t∈R),求實數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,☉O1,☉O2交于兩點P,Q,直線AB過點P,與⊙O1,⊙O2分別交于點A,B,直線CD過點Q,與⊙O1,⊙O2分別交于點C,D.求證:AC∥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.語文老師要從10篇課文中隨機抽3篇讓學生背誦,某學生只能背誦其中的6篇,求:
( I)抽到他能背誦的課文的數(shù)量的分布列;
( II)他能及格的概率.

查看答案和解析>>

同步練習冊答案