A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 舉出反例:f(x)=$\left\{\begin{array}{l}2x,x≤1\\-x+3,x>1\end{array}\right.$.g(x)=$\left\{\begin{array}{l}2x+3,x≤0\\-x+3,0<x<1\\ 2x,x≥1\end{array}\right.$,h(x)=$\left\{\begin{array}{l}-x,x≤0\\ 2x,x>0\end{array}\right.$,可判斷①;
根據(jù)函數(shù)的周期性的定義,可判斷②;根據(jù)函數(shù)奇偶性的性質(zhì),可判斷③.
解答 解:①不成立.可舉反例:f(x)=$\left\{\begin{array}{l}2x,x≤1\\-x+3,x>1\end{array}\right.$.g(x)=$\left\{\begin{array}{l}2x+3,x≤0\\-x+3,0<x<1\\ 2x,x≥1\end{array}\right.$,h(x)=$\left\{\begin{array}{l}-x,x≤0\\ 2x,x>0\end{array}\right.$.均不是增函數(shù),
但f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數(shù),
故①錯(cuò)誤;
②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),
h(x)+g(x)=h(x+T)+g(x+T),
前兩式作差可得:g(x)-h(x)=g(x+T)-h(x+T),
結(jié)合第三式可得:g(x)=g(x+T),h(x)=h(x+T),
同理可得:f(x)=f(x+T),因此②正確.
③若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是奇函數(shù),
f(x)+g(x)+f(x)+h(x)-[g(x)、h(x)]=2f(x)是奇函數(shù),
即f(x)是奇函數(shù),
同理g(x)、h(x)均是奇函數(shù),故③正確;
故選:C.
點(diǎn)評(píng) 本題考查了抽象函數(shù)的單調(diào)性,奇偶性與周期性、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | m | C. | 2m | D. | 4m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | $\frac{\sqrt{34}}{2}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k3>k1>k2 | B. | k1-k2>0 | C. | k1•k2<0 | D. | k3>k2>k1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{9}{16}$ | C. | $\frac{3}{4}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com