7.如圖,在平面直角坐標(biāo)系中有三條直線l1,l2,l3,其對(duì)應(yīng)的斜率分別為k1,k2,k3,則下列選項(xiàng)中正確的是(  )
A.k3>k1>k2B.k1-k2>0C.k1•k2<0D.k3>k2>k1

分析 由圖形可得:三條直線l1,l2,l3的傾斜角θi(i=1,2,3)滿足:π>θ2>θ1$>\frac{π}{2}$>θ3>0,利用正切函數(shù)的單調(diào)性與斜率的計(jì)算公式即可得出.

解答 解:由圖形可得:三條直線l1,l2,l3的傾斜角θi(i=1,2,3)滿足:π>θ2>θ1$>\frac{π}{2}$>θ3>0,
∴k3>k2>k1
故選:D.

點(diǎn)評(píng) 本題考查了正切函數(shù)的單調(diào)性與斜率的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.頂點(diǎn)在原點(diǎn),焦點(diǎn)坐標(biāo)為(-3,0)的拋物線的標(biāo)準(zhǔn)方程y2=-12x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的偶函數(shù)f(x)滿足f(x-3)=-f(x),對(duì)?x1,x2∈[0,3]且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,則有(  )
A.f(49)<f(64)<f(81)B.f(49)<f(81)<f(64)C.f(64)<f(49)<f(81)D.f(64)<f(81)<f(49)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)、g(x)、h(x)是定義域?yàn)镽的三個(gè)函數(shù),對(duì)于命題:
①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數(shù),則f(x)、g(x)、h(x)中至少有一個(gè)增函數(shù);
②若T均是f(x)+g(x)、f(x)+h(x)、g(x)+h(x)的一個(gè)周期,則T也均是f(x)、g(x)、h(x)的一個(gè)周期,
③若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是奇函數(shù),則f(x)、g(x)、h(x)均是奇函數(shù),
下列上述命題成立的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=x+xlnx的單調(diào)遞增區(qū)間是(  )
A.(0,e-2B.(e-2,+∞)C.(-∞,e-2D.(e-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=4cos(ωx-$\frac{π}{6}$)sinωx-2cos(2ωx+π),其中ω>0.
(1)求函數(shù)y=f(x)的值域;
(2)若f(x)的最小正周期為π,求f(x)在區(qū)間[-$\frac{π}{2}$,π]上的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.不等式ax2+(a+1)x+1≥0恒成立,則實(shí)數(shù)a的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)在($\frac{π}{2}$,π)上單調(diào)遞增,則ω的取值范圍是( 。
A.(0,$\frac{1}{3}$]B.[$\frac{1}{3}$,$\frac{2}{3}$]C.[$\frac{2}{3}$,$\frac{4}{3}$]D.($\frac{2}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若b=$\sqrt{2}$,求△ABC面積的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案