已知函數(shù)f(x)=
(
1
2
)x,(x≤0)
2f(x-1),(x>0)
,若方程f(x)=3x+a有且只有一個(gè)解,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:畫出函數(shù)圖象,以及g(x)=3x+a的圖象,從圖象直觀的找出有一個(gè)交點(diǎn)的自變量范圍.
解答: 解:如圖,

要使方程f(x)=3x+a有且只有一個(gè)解,只要函數(shù)f(x)的圖象與g(x)=3x+a的圖象只有一個(gè)交點(diǎn)即可,由圖知,只要a≥4,或a<1即可.
故答案為:a≥4,或a<1.
點(diǎn)評(píng):本題考查了數(shù)形結(jié)合的方法求方程根的個(gè)數(shù)問題,關(guān)鍵是正確畫圖,視圖.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差依次構(gòu)成一個(gè)等比數(shù)列,則稱這個(gè)數(shù)列為差等比數(shù)列,如果數(shù)列{an}滿足an+1=3an-2an-1(n≥2),a1=1,a2=3.
(Ⅰ)求證:數(shù)列{an}是差等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)Sn是數(shù)列{an}的前n項(xiàng)和,如果對(duì)任意的正整數(shù)n(n≥4),不等式Sn≤kan-9k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)單調(diào)減區(qū)間;
(3)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)=
1(-1<x<0)
0(0≤x≤1)
,則f(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-(2a+2)x+a(a+2)≤0}.B={x|y=log2(4-x2)}
(1)若a=1,求A∩B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義f(x)是R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2.若對(duì)任意的x∈[a,a+2]均有f(x+a)≥2f(x),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x+1)的定義域是[-
3
4
,7],則函數(shù)
f(2x)
log2(x+1)
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:“?x∈(0,有9x+
a2
x
≥7a+1,其中常數(shù)a<0”,若命題q:“?x0∈R,x02+2ax0+2-a=0,若“p且q”為假命題,“p或q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x0∈R,x02+ax0+a<0.若?p是真命題,則實(shí)數(shù)a的取值范圍是( 。
A、[0,4]
B、(0,4)
C、(-∞,0)∪(4,+∞)
D、(-∞,0]∪[4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案