分析 (Ⅰ)由a2=$\frac{2{a}^{2}}{4a-1}$>$\frac{1}{2}$可解得a>$\frac{1}{4}$且a≠$\frac{1}{2}$,從而利用歸納法求解即可;
(Ⅱ)可判斷出$\frac{1}{2}$<an<1,n≥2;從而分類討論證明即可.
解答 解:(Ⅰ)∵a1=a,∴a2=$\frac{2{a}^{2}}{4a-1}$>$\frac{1}{2}$,
解得,a>$\frac{1}{4}$且a≠$\frac{1}{2}$,
∵當(dāng)a>$\frac{1}{2}$時(shí),$\frac{2{a}^{2}}{4a-1}$>$\frac{1}{2}$,
∴對(duì)任意的n∈N*,都有an+1>$\frac{1}{2}$,
故實(shí)數(shù)a的取值范圍為($\frac{1}{4}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞);
(Ⅱ)證明:∵a1=a=1,
∴a2=$\frac{2}{4-1}$=$\frac{2}{3}$,
由(Ⅰ)知,an>$\frac{1}{2}$恒成立,
an+1-an=$\frac{2{a}_{n}^{2}}{4{a}_{n}-1}$-an=$\frac{{a}_{n}(1-2{a}_{n})}{4{a}_{n}-1}$<0,
∴$\frac{1}{2}$<an<1,n≥2;
當(dāng)n=1時(shí),S1<$\frac{1}{4}$+1,
當(dāng)n=2時(shí),S2=1+$\frac{2}{3}$<2;
當(dāng)n≥3時(shí),Sn<n,而$\frac{{n}^{2}}{4}$+1>2•$\frac{n}{2}$•1=n,
故Sn<$\frac{{n}^{2}}{4}$+1,
綜上所述,Sn<$\frac{{n}^{2}}{4}$+1恒成立.
點(diǎn)評(píng) 本題考查了不等式的解法,數(shù)列的性質(zhì)的判斷,同時(shí)考查了歸納法與分類討論的思想方法應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | -2 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 3+$\sqrt{5}$ | C. | 9 | D. | 14 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com