分析 利用等差數(shù)列的通項公式、“累加求和”方法可得an,再利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
解答 解:∵an+1-an=$\frac{1}{n}$an+(n+1)2n,∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=2n,
n≥2時,$\frac{{a}_{n}}{n}$=1+2+(22+23+…+2n-1)=$\frac{{2}^{n}-1}{2-1}$=2n-1.(n=1符合),
令${b_n}=n•{2^n}$,且{bn}的前n項和為Tn,
${T_n}=1×{2^1}+2×{2^2}+L+n×{2^n},2{T_n}=1×{2^2}+2×{2^3}+L'+n×{2^{n+1}}$,
作差化簡得:${T_n}=2+(n-1)•{2^{n+1}}$,${S_n}={T_n}-\frac{n(n+1)}{2}=2+(n-1)•{2^{n+1}}-\frac{n(n+1)}{2}$,
故答案為:$2+(n-1)•{2^{n+1}}-\frac{n(n+1)}{2}$.
點評 本題考查了等差數(shù)列的通項公式、“累加求和”方法、“錯位相減法”與等比數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com