Processing math: 55%
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆ繝鈧柆宥呯劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸欏啫鐣峰畷鍥ь棜閻庯絻鍔嬪Ч妤呮⒑閸︻厼鍔嬮柛銊ョ秺瀹曟劙鎮欏顔藉瘜闂侀潧鐗嗗Λ妤冪箔閸屾粎纾奸柍褜鍓氱粭鐔煎焵椤掆偓閻e嘲饪伴崼顐f櫍闂佺粯鍨靛Λ娆戔偓闈涚焸濮婃椽妫冨☉姘暫濠碘槅鍋呴〃鍡涘箞閵婎煈妲剧紓浣介哺鐢繝骞冮埡鍛闁肩⒈鍏涚槐婵嬫⒒娴h櫣甯涘〒姘殜瀹曟娊鏁愰崱妯哄伎闂侀€炲苯澧撮柡灞炬礋瀹曠厧鈹戦崶鑸碉骏闂備礁鎲¤摫闁圭懓娲濠氬焺閸愩劎绐為柣蹇曞仦閸ㄦ繂鈻介鍛瘈闁靛繈鍨洪崵鈧┑鈽嗗亝缁诲倿鎮惧畡鎵虫斀闁糕檧鏅涢幃鎴︽⒑缁洖澧查柛鏃€甯為懞杈ㄧ節濮橆厸鎷洪梺鍛婄箓鐎氼剟鍩€椤掍焦鍊愰柟顔矫埞鎴犫偓锝呯仛閺呮粌顪冮妶鍡楀闁稿﹥顨堟竟鏇熺附缁嬭法楠囬梺鍓插亝缁嬫垶淇婇悾灞稿亾鐟欏嫭绀€闁活剙銈搁崺鈧い鎺戝枤濞兼劖绻涢崣澶呯細闁轰緡鍣i獮鎺懳旂€n剛鈼ゆ繝鐢靛█濞佳囶敄閹版澘鏋侀柛鏇ㄥ灡閻撱垺淇婇娆掝劅婵℃彃鍢查…璺ㄦ喆閸曨剛顦板┑顔硷攻濡炶棄鐣烽妸锔剧瘈闁告洦鍘剧粣妤呮⒒娴e懙鍦偓娑掓櫆缁绘稒绻濋崶褏鐣鹃柣蹇曞仩琚欓柡瀣叄閺岀喖骞嗚閸ょ喖鏌涘鈧禍璺侯潖濞差亜浼犻柛鏇ㄥ墮閸嬪秹姊洪崨濠冪叆闁活厼鍊块獮鍐潨閳ь剟骞冮埡鍛仺闁汇垻顣槐鏌ユ⒒娴h櫣甯涢柣鐔村灲瀹曟垿骞樼紒妯煎幈闂侀潧枪閸庢娊宕洪敐鍥e亾濞堝灝鏋涙い顓㈡敱娣囧﹪骞栨担鍝ュ幐闂佺ǹ鏈惌顔捐姳娴犲鈷掑ù锝呮嚈瑜版帒瀚夋い鎺戝€婚惌娆撴煙鏉堟儳鐦滈柡浣稿€块弻銊╂偆閸屾稑顏�濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮诲☉妯锋婵鐗婇弫楣冩⒑閸涘﹦鎳冪紒缁橈耿瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顖涒拺闁告繂瀚烽崕搴g磼閼搁潧鍝虹€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佽鍨庨崘锝嗗瘱缂傚倷绶¢崳顕€宕归幎钘夌闁靛繒濮Σ鍫ユ煏韫囨洖啸妞ゆ挻妞藉娲传閸曨偅娈滈梺绋款儐閹瑰洭寮诲☉銏犖ч柛娑卞瀺瑜旈弻锛勪沪閸撗勫垱婵犵绱曢崗姗€銆佸▎鎾村亗閹煎瓨蓱鐎氫粙姊婚崒娆愮グ婵℃ぜ鍔庣划鍫熸媴鐠囥儲妞介、姗€濮€閻樼儤鎲伴梻浣告惈濞村嫮妲愰弴銏″仾闁逞屽墴濮婃椽宕崟顒€绐涢梺绋库看閸嬪﹥淇婇悜鑺ユ櫆閺夌偞澹嗛惄搴ㄦ⒒娴g懓顕滄俊顐$窔椤㈡俺顦查柍璇茬Т椤撳吋寰勭€n剙骞嶆俊鐐€栧濠氭偤閺傚簱鏋旀繝濠傛噳閸嬫挾鎲撮崟顒傤槰濡炪們鍔屽Λ妤咁敋閵夆晛绀嬫い鎺戝€婚惁鍫熺箾鏉堝墽鍒板鐟帮工铻炴繝濠傜墛閳锋帡鏌涚仦鎹愬闁逞屽墴椤ユ挾鍒掗崼鐔虹懝闁逞屽墴閻涱喗寰勯幇顒備紜闁烩剝甯婇悞锕€顪冩禒瀣瀬闁告劦鍠栫壕鍏兼叏濡鏁剧紒鍗炲船閳规垿鎮╅鑲╀紘闂佺硶鏅滈悧鐘茬暦濠靛鍗抽柕蹇曞Т瀵兘姊洪棃娑辨Т闁哄懏绮撻幃锟犳偄閸忚偐鍘甸梻渚囧弿缁犳垿寮稿☉銏$厱闁哄倹顑欓崕鏃堟煛鐏炵晫效闁哄被鍔庨埀顒婄秵娴滅偞瀵煎畝鍕拺閻犲洠鈧櫕鐏堢紓鍌氱Т閿曨亪鎮伴鐣岀懝闁逞屽墴閻涱噣骞掑Δ鈧粻锝嗙節閸偄濮夐柍褜鍓濆▍鏇犳崲濠靛鍋ㄩ梻鍫熺◥缁爼姊洪悷鏉挎毐缂佺粯锚閻e嘲鈹戦崱蹇旂€婚梺瑙勫劤閻ゅ洭骞楅弴銏♀拺缂備焦蓱閳锋帡鏌涘Ο鐘叉噽閻棝鏌涢弴銊ョ仭闁绘挸绻橀弻娑㈩敃閿濆洨鐣哄銈冨劜缁秹濡甸崟顔剧杸闁靛绠戦锟�
20.整數(shù)p>1.證明:當(dāng)x>-1且x≠0時(shí),(1+x)p>1+px.

分析 方法一:用數(shù)學(xué)歸納法證明.
方法二:可構(gòu)造函數(shù)f(x)=(1+x)p-(1+px),求導(dǎo)數(shù)后利用函數(shù)的單調(diào)性求解;

解答 證明:方法一:用數(shù)學(xué)歸納法證明
①當(dāng)p=2時(shí),(1+x)2=1+2x+x2>1+2x,原不等式(1+x)p>1+px成立,
②假設(shè)當(dāng)p=k(k≥2,k∈N*)不等式成立,
則當(dāng)p=k+1是,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2
>1+(k+1)x
所以p=k+1時(shí),原不等式也成立,
綜合  ①②可得,當(dāng)x>-1且x≠0時(shí)對(duì)一切整數(shù)p>1,不等式(1+x)p>1+px均成立,
方法二:令f(x)=(1+x)p-(1+px),則f′(x)=p(1+x)p-1-p=p[(1+x)p-1-1].
①當(dāng)-1<x<0時(shí),0<1+x<1,由p>1知p-1>0,∴(1+x)p-1<(1+x)0=1,
∴(1+x)p-1-1<0,即f′(x)<0,
∴f(x)在(-1,0]上為減函數(shù),
∴f(x)>f(0)=(1+0)p-(1+p×0)=0,即(1+x)p-(1+px)>0,
∴(1+x)p>1+px.
②當(dāng)x>0時(shí),有1+x>1,得(1+x)p-1>(1+x)0=1,
∴f′(x)>0,
∴f(x)在[0,+∞)上為增函數(shù),
∴f(x)>f(0)=0,
∴(1+x)p>1+px.
綜合①、②知,當(dāng)x>-1且x≠0時(shí),都有(1+x)p>1+px,得證.

點(diǎn)評(píng) 本題考查了不等式的證明,長(zhǎng)采用數(shù)學(xué)歸納法和構(gòu)造函數(shù)法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=ax-lnx,a∈R.
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)a=1ln10b=lge2c=lge,則有( �。�
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)已知數(shù)列{an}的前n項(xiàng)和Sn=3n22n+1,求通項(xiàng)公式an;
(2)在數(shù)列{an}中,a1=1,an+1-an=2n+1,求數(shù)列的通項(xiàng)an;
(3)在數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=n+23an,求{an}的通項(xiàng)公式an
(4)已知在每項(xiàng)均大于零的數(shù)列{an}中,首項(xiàng)a1=1,且前n項(xiàng)和Sn滿足SnSn1Sn1Sn=2SnSn1(n∈N*,n≥2),求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=ax2-(a+2)x+ln x.
(1)a=1時(shí),求y=f(x)在(1,f(1))處的切線方程.
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上最小值為-2,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)fx=sinxx2,則f′(π)=-\frac{1}{{π}^{2}}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=\frac{{{x^2}+ax+b}}{e^x},若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)全集U={(x,y)|x,y∈R},P=\left\{{(x,y)|\left\{{\begin{array}{l}{3x+4y-12>0}\\{2x-y-8<0}\\{x-2y+6>0}\end{array},x,y∈R}\right.}\right\}Q={(x,y)|x2+y2≤r2,r∈R+},若Q⊆∁UP恒成立,則實(shí)數(shù)r的最大值是\frac{12}{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知曲線f(x)=x3-2x2+1
(1)求在點(diǎn)P(1,0)處的切線l1的方程;
(2)求經(jīng)過(guò)點(diǎn)Q(2,1)且與已知曲線f(x)相切的直線l2的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偠顕ч埀顒佺箓閻g兘顢曢敃鈧敮闂佹寧妫佹慨銈夋儊鎼粹檧鏀介柣鎰▕閸ょ喎鈹戦鐐毈闁硅櫕绻冮妶锝夊礃閵娧冨箣闂備胶鎳撻顓㈠磻濞戞氨涓嶉柣妯肩帛閳锋垹绱掔€n亜鐨¢柡鈧紒妯镐簻闁靛ǹ鍎查ˉ銏☆殽閻愯尙澧﹀┑鈩冪摃椤︻噣鏌涚€n偅宕屾俊顐㈠暙閳藉鈻庤箛鏃€鐣奸梺璇叉唉椤煤閺嵮屽殨闁割偅娲栫粻鐐烘煏婵炲灝鍔存繛鎾愁煼閹綊宕堕鍕婵犮垼顫夊ú鐔奉潖缂佹ɑ濯撮柧蹇曟嚀缁椻剝绻涢幘瀵割暡妞ゃ劌锕ら悾鐑藉级鎼存挻顫嶅┑顔矫ぐ澶岀箔婢跺ň鏀介柣鎰綑閻忥箓鎳i妶鍡曠箚闁圭粯甯炴晶娑氱磼缂佹ḿ娲寸€规洖宕灒闁告繂瀚峰ḿ鏃€淇婇悙顏勨偓鏇犳崲閹烘绐楅柡宓本缍庣紓鍌欑劍钃卞┑顖涙尦閺屻倝骞侀幒鎴濆Б闂侀潧妫楅敃顏勵潖濞差亝顥堥柍鍝勫暟鑲栫紓鍌欒兌婵敻骞戦崶顒佸仒妞ゆ棁娉曢悿鈧┑鐐村灦閻燂箑鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘垹鐭嗛柛鎰ㄦ杺娴滄粓鏌¢崶褎顥滄繛灞傚€濋幃鈥愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬫鍎愰柛鏃€鐟╁璇测槈濡攱鐎婚棅顐㈡祫缁茬偓鏅ラ梻鍌欐祰椤曟牠宕板Δ鍛仭鐟滃繐危閹版澘绠婚悗娑櫭鎾绘⒑閸涘﹦绠撻悗姘卞厴閸┾偓妞ゆ巻鍋撻柣顓炲€垮璇测槈閵忕姈鈺呮煏婢诡垰鍟伴崢浠嬫煟鎼淬埄鍟忛柛鐘崇墵閳ワ箓鏌ㄧ€b晝绠氶梺褰掓?缁€渚€鎮″☉銏$厱閻忕偛澧介悡顖滅磼閵娿倗鐭欐慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭磼濠婂懐鍘梻浣侯攰閹活亞鈧潧鐭傚顐﹀磼閻愬鍙嗛梺缁樻礀閸婂湱鈧熬鎷�