4.在△ABC中,角A、B、C的對邊分別為a、b、c,$\frac{π}{3}$-A=B,a=3,b=5,則c=7.

分析 由已知及三角形內角和定理可求C的值,進而利用余弦定理即可求得c的值.

解答 解:∵$\frac{π}{3}$-A=B,A+B+C=π,
∴C=$\frac{2π}{3}$,
又∵a=3,b=5,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+^{2}-2abcosC}$=$\sqrt{{3}^{2}+{5}^{2}-2×3×5×(-\frac{1}{2})}$=7.
故答案為:7.

點評 本題主要考查了三角形內角和定理,余弦定理在解三角形中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知等邊△ABC中,E,F(xiàn)分別為AB,AC邊的中點,M為EF的中點,N為BC邊上一點,且CN=$\frac{1}{4}$BC,將△AEF沿EF折到△A'EF的位置,使平面A'EF⊥平面EFCB.
(Ⅰ)求證:平面A'MN⊥平面A'BF;
(Ⅱ)設BF∩MN=G,求三棱錐A'-BGN的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(1+cos2θ,sin2θ),$\overrightarrow$=(1-sin2θ,sinθ)($\frac{π}{2}<θ<π$)
(Ⅰ)求|$\overrightarrow{a}+\overrightarrow$|的取值范圍;
(Ⅱ)如果|$\overrightarrow{a}$|-|$\overrightarrow$|=-$\frac{2}{5}$,求tanθ-$\frac{1}{tanθ}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.一平面過半徑為R的球O的半徑OA的中點,且垂直于該半徑OA,則該平面截球的截面面積為( 。
A.$\frac{1}{2}π{R^2}$B.$\frac{{\sqrt{3}}}{2}π{R^2}$C.πR2D.$\frac{3}{4}π{R^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設p:函數(shù)f(x)=x3e3ax在區(qū)間(0,2]上單調遞增;q:函數(shù)g(x)=ax-$\frac{a}{x}$+2lnx在其定義域上存在極值.
(1)若p為真命題,求實數(shù)a的取值范圍;
(2)如果“p或q”為真命題,“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.等差數(shù)列{an}和{bn},其前n項和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,則$\frac{{{a_{10}}}}{{{b_{10}}}}$等于( 。
A.$\frac{72}{13}$B.$\frac{135}{22}$C.$\frac{79}{14}$D.$\frac{142}{23}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.數(shù)列{an}滿足:a1=1,an+1=2an+2n,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知3cosBcosC+1=3sinBsinC+cos2A.
(1)求A的大;
(2)若$a=2\sqrt{3}$,求b+2c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知a>b,則下列不等式正確的是( 。
A.ac>bcB.a2>b2C.|a|<|b|D.2a>2b

查看答案和解析>>

同步練習冊答案