9.等差數(shù)列{an}和{bn},其前n項(xiàng)和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,則$\frac{{{a_{10}}}}{{{b_{10}}}}$等于( 。
A.$\frac{72}{13}$B.$\frac{135}{22}$C.$\frac{79}{14}$D.$\frac{142}{23}$

分析 利用$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{{S}_{19}}{{T}_{19}}$,即可得出.

解答 解:$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{\frac{19({a}_{1}+{a}_{19})}{2}}{\frac{19(_{1}+_{19})}{2}}$=$\frac{{S}_{19}}{{T}_{19}}$=$\frac{7×19+2}{19+3}$=$\frac{135}{22}$.
故選;B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,sin2B=sinAsinC.
(1)若$\frac{1}{tanA}$,$\frac{\sqrt{3}}{3}$,$\frac{1}{tanC}$成等差數(shù)列,求cosB的值;
(2)若$\frac{BC}{sinA}$=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{1}{3}{x}^{3}+\frac{1}{2}a{x}^{2}+2bx+c(a,b,c∈R)$,且函數(shù)f(x)在區(qū)間(0,1)內(nèi)取得極大值,在區(qū)間(1,2)內(nèi)取得極小值,則z=(a+3)2+b2的取值范圍為($\frac{1}{2}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知數(shù)列{an}的前n和為Sn,a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1,則a5+S4=(  )
A.39B.45C.50D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,$\frac{π}{3}$-A=B,a=3,b=5,則c=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)f(x)=4cos(ωx+φ)對(duì)任意的x∈R,都有$f(-x)=f(\frac{π}{3}+x)$,若函數(shù)g(x)=sin(ωx+φ)-2,則$g(\frac{π}{6})$的值是( 。
A.1B.-5或3C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,1]內(nèi)遞減,那么實(shí)數(shù)a的取值范圍為( 。
A.a≤2B.a≤0C.a≥2D.a≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.從某班級(jí)隨機(jī)詢(xún)問(wèn)了該班男生A五個(gè)科目的成績(jī)分別是86,94,88,92,90,男生B五個(gè)科目的成績(jī)分別是85,91,89,93,92,去請(qǐng)問(wèn)哪個(gè)同學(xué)的學(xué)習(xí)情況更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)向量$\overrightarrow{OM}$、$\overrightarrow{ON}$是夾角為60°的兩個(gè)單位向量,向量$\overrightarrow{OP}$=x•$\overrightarrow{OM}$+y•$\overrightarrow{ON}$,(x、y為實(shí)數(shù)).若△PMN是以點(diǎn)M為直角頂點(diǎn)的直角三角形,則x-y的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案