【題目】在中,角的對邊分別為,已知
(1)求角的大。
(2)若,且的面積為,求的值.
【答案】(1) ;(2).
【解析】
試題(1)由三角形內(nèi)角和定理,兩角和的正弦公式化簡已知等式可得,即可得解的值;(2)結(jié)合(1)的結(jié)論,利用三角形面積公式可求,利用余弦定理可得,聯(lián)立即可解得的值.
試題解析:(1)由題意得,∵A+B+C=π,∴sin A=sin(π-B-C)=sin(B+C)
∴sin Bcos C+sin Ccos B-sin Ccos B-sin Bsin C=0,
即sin B(cos C-sin C)=0,
∵0<B<π,∴sin B≠0,∴tan C=,又0<C<π,故C=.
(2)∵S△ABC=ab×=,
∴ab=4,
又c=2,由余弦定理得a2+b2-2ab×()=4,
∴a2+b2=8.則解得a=2,b=2.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,平面,,點、分別在線段、上,且,其中,連接,延長與的延長線交于點,連接.
(Ⅰ)求證:平面;
(Ⅱ)若時,求二面角的正弦值;
(Ⅲ)若直線與平面所成角的正弦值為時,求值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx﹣xcosx﹣x,f'(x)為f(x)的導數(shù).
(1)求曲線在點A(0,f(0))處的切線方程;
(2)設,求在區(qū)間[0,π]上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱中,,,已知G與E分別為和的中點,D和F分別為線段AC和AB上的動點(不包括端點),若,則線段DF的長度的平方取值范圍為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于數(shù)列,給出下列命題:①數(shù)列滿足,則數(shù)列為公比為2的等比數(shù)列;②“,的等比中項為”是“”的充分不必要條件:③數(shù)列是公比為的等比數(shù)列,則其前項和;④等比數(shù)列的前項和為,則,,成等比數(shù)列,其中假命題的序號是( )
A.②B.②④C.①②④D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二十四節(jié)氣是中國古代的一種指導農(nóng)事的補充歷法,是我國勞動人民長期經(jīng)驗的積累成果和智慧的結(jié)晶,被譽為“中國的第五大發(fā)明”.由于二十四節(jié)氣對古時候農(nóng)事的進行起著非常重要的指導作用,所以勞動人民編寫了很多記憶節(jié)氣的歌謠:春雨驚春清谷天,夏滿芒夏暑相連,秋處露秋寒霜降,冬雪雪冬小大寒.《易經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其他節(jié)氣的晷影是按照等差數(shù)列的規(guī)律計算出來的,在下表中,冬至的晷影最長為130.0寸,夏至的晷影最短為14.8寸,那么《易經(jīng)》中所記錄的清明的晷影長應為( )
A.77.2寸B.72.4寸C.67.3寸D.62.8寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知遞增的等差數(shù)列的前項和為,若,,成等比數(shù)列,且.
(1)求數(shù)列的通項公式及前項和;
(2)設,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若定義在R上的偶函數(shù)滿足,且時, ,則函數(shù)的零點個數(shù)是( )
A. 6個B. 8個C. 2個D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有人玩擲均勻硬幣走跳棋的游戲,棋盤上標有第0站(出發(fā)地),在第1站,第2站,……,第100站. 一枚棋子開始在出發(fā)地,棋手每擲一次硬幣,這枚棋子向前跳動一次,若擲出正向,棋子向前跳一站,若擲出反面,棋子向前跳兩站,直到棋子跳到第99站(失敗收容地)或跳到第100站(勝利大本營),該游戲結(jié)束. 設棋子跳到第站的概率為.
(1)求,,;
(2)寫出與、的遞推關(guān)系);
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com