【題目】已知袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球個.若從袋子中隨機抽取1個小球,取到標號為2的小球的概率是.
(1)求的值;
(2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為,第二次取出的小球標號為.
(i)記“”為事件,求事件的概率;
(ii)在區(qū)間內(nèi)任取2個實數(shù),求事件“恒成立”的概率.
【答案】(1);(2)(i);(ii).
【解析】
試題分析:(1)從個小球中隨機抽取個服從古典概型概率公式,根據(jù)概率公式有,可以求出;(2)(i)首先寫出所有基本事件,共種,然后從中找出滿足的基本事件,即事件所包含的個數(shù),就可以求出事件的概率;(ii)本問考查幾何概型概率問題,在區(qū)間內(nèi)任取個實數(shù),所有的構(gòu)成以為邊長的正方形,事件“恒成立”等價于恒成立,在正方形內(nèi),畫圖表示出相應(yīng)的區(qū)域,然后根據(jù)幾何概型概率公式就可以求解.
試題解析:(1)依題意,得;
(2)(i)記標號為0的小球為,標號為1的小球為,標號為2的小球為,則取出2個小球的可能情況有:,共12種,其中滿足“”的有4種:,
所以所求概率為;
(ii)記“恒成立”為事件,
則事件等價于“恒成立”,
可以看成平面中的點的坐標,則全部結(jié)果所構(gòu)成的區(qū)域為,
而事件構(gòu)成區(qū)域,
所以所求的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,以軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.
(1)求曲線的直角坐標方程并指出其形狀;
(2)設(shè)是曲線上的動點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列、滿足: .
(1)求;
(2)設(shè),求數(shù)列的通項公式;
(3)設(shè),不等式恒成立時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個玩具的各個面上上分別寫著數(shù)字1,2,3,5,同時投擲這兩枚玩具一次,記為兩個朝下的面上的數(shù)字之和.
(1)求事件“不小于6”的概率;
(2)“為奇數(shù)”的概率和“為偶數(shù)”的概率是不是相等?證明你作出的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一個質(zhì)地均勻的正四面體骰子,每個面上分別標有數(shù)字1、2、3、4,將這個骰子連續(xù)投擲兩次,朝下一面的數(shù)字分別記為,試計算下列事件的概率:
(1)事件;
(2)事件:函數(shù)在區(qū)間上為增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為(為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標方程;
(2)點與點關(guān)于軸對稱,求曲線 上的點到點的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是矩形,,,,且.
(1)求證:平面平面;
(2)設(shè)是的中點,判斷并證明在線段上是否存在點,使平面,若存在,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位有、、三個工作點,需要建立一個公共無線網(wǎng)絡(luò)發(fā)射點,使得發(fā)射點到三個工作點的距離相等.已知這三個工作點之間的距離分別為,,.假定、、、四點在同一平面內(nèi).
(Ⅰ)求的大;
(Ⅱ)求點到直線的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com