【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)函數(shù)與軸交于兩點(diǎn)且,證明:.
【答案】(1) 函數(shù)的最大值為-1;(2)詳見解析.
【解析】
試題分析:(1)當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù),并求定義域內(nèi)的極值點(diǎn),判斷極值點(diǎn)兩側(cè)的單調(diào)性,得到函數(shù)的最大值;(2)利用點(diǎn)差法得到,再求函數(shù)的導(dǎo)數(shù),并且代入求,初步化簡后采用分析法證明,當(dāng)證明到,根據(jù),,經(jīng)過換元設(shè),轉(zhuǎn)化為關(guān)于的函數(shù),利用導(dǎo)數(shù)證明函的單調(diào)性,求函數(shù)的最小值,得到不等式的證明.
試題解析:(1)當(dāng)時(shí),,求導(dǎo)得,很據(jù)定義域,容易得到在處取得最大值,得到函數(shù)的最大值為-1.
(2)根據(jù)條件得到,,
兩式相減得,
得
因?yàn)?/span>
得
因?yàn)?/span>,所以,要證
即證
即證,即證
設(shè),原式即證,即證
構(gòu)造求導(dǎo)很容易發(fā)現(xiàn)為負(fù),單調(diào)減,所以得證
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某加工廠需定期購買原材料,已知每公斤原材料的價(jià)格為1.5元,每次購買原材料需支付運(yùn)費(fèi)600元,每公斤原材料每天的保管費(fèi)用為0.03元,該廠每天需要消耗原材料400公斤,每次購買的原材料當(dāng)天即開始使用(即有400公斤不需要保管).
(Ⅰ)設(shè)該廠每x天購買一次原材料,試寫出每次購買的原材料在x天內(nèi)總的保管費(fèi)用y1關(guān)于x的函數(shù)關(guān)系式;
(Ⅱ)求該廠多少天購買一次原材料才能使平均每天支付的總費(fèi)用y最少,并求出這個(gè)最少(。┲担
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若<<0,則下列不等式:①<;②|a|+b>0;③a->b-;④lna2>lnb2中,正確的是( )
(A)①④ (B)②③ (C)①③ (D)②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, ,底面是矩形, , , 分別是, 的中點(diǎn).
(1)求證:;
(2)已知點(diǎn)是的中點(diǎn),點(diǎn)是上一動(dòng)點(diǎn),當(dāng)為何值時(shí),平面?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,底面為矩形,側(cè)面底面,,,.
(1)證明:;
(2)設(shè)與平面所成的角為,求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,,,側(cè)面底面,,.
(1)證明:平面平面;
(2)若,求點(diǎn)到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是.
(1)求的值;
(2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.
(i)記“”為事件,求事件的概率;
(ii)在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù),求事件“恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為:,其中:,且為常數(shù).
(1)判斷曲線的形狀,并說明理由;
(2)設(shè)曲線分別與軸,軸交于點(diǎn)(不同于坐標(biāo)原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;
(3)設(shè)直線與曲線交于不同的兩點(diǎn),且為坐標(biāo)原點(diǎn)),求曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè)是函數(shù)的極值點(diǎn),求并討論的單調(diào)性;
(2)設(shè)是函數(shù)的極值點(diǎn),且恒成立,求的取值范圍(其中常數(shù)滿足).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com