17.已知命題p:方程$\frac{x^2}{2m}+\frac{y^2}{12-m}=1$表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線$\frac{y^2}{2}-\frac{x^2}{3m}=1$的離心率e∈(2,3);若p∨q為真,且p∧q為假,求實(shí)數(shù)m的取值范圍.

分析 若p∨q為真,且p∧q為假,p、q一真一假,進(jìn)而可得實(shí)數(shù)m的取值范圍.

解答 解:命題p為真時(shí):0<2m<12-m,即:0<m<4…(2分)
命題p為假時(shí):m≤0或m≥4
命題q為真時(shí):$\left\{\begin{array}{l}4<\frac{2+3m}{2}<9\\ 3m>0\end{array}\right.⇒2<m<\frac{16}{3}$…(4分)
命題q為假時(shí):$m≥\frac{16}{3}或m≤2$,
由p∨q為真,p∧q為假可知:p、q一真一假…(6分)
②p真q假時(shí)$\left\{{\begin{array}{l}{0<m<4}\\{m≥\frac{16}{3}或m≤2}\end{array}⇒0<m≤2}\right.$:…(7分)
②p假q真時(shí):$\left\{{\begin{array}{l}{m≥4或m≤0}\\{2<m<\frac{16}{3}}\end{array}⇒4≤m<\frac{16}{3}}\right.$…(8分)
綜上所述:0<m≤2或$4≤m<\frac{16}{3}$…(10分)

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,橢圓和雙曲線的性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線l:5ax-5y-a+3=0(a∈R) 的圖象必過定點(diǎn)($\frac{1}{5},\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)F1,F(xiàn)2分別是橢圓$E:{x^2}+\frac{y^2}{b^2}=1(0<b<1)$的左、右焦點(diǎn),已知點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn),若|AF1|=2|BF1|,AF2⊥x軸,則橢圓E的方程為(  )
A.${x^2}+\frac{{3{y^2}}}{2}=1$B.${x^2}+\frac{{6{y^2}}}{5}=1$C.${x^2}+\frac{{5{y^2}}}{4}=1$D.${x^2}+\frac{{8{y^2}}}{7}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過三個(gè)點(diǎn)A(1,3),B(4,2),C(1,-1)的圓交y軸于M,N兩點(diǎn),則|MN|=( 。
A.2$\sqrt{6}$B.3$\sqrt{6}$C.2D.5$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在區(qū)間(1,2)內(nèi)隨機(jī)取個(gè)實(shí)數(shù)a,則直線y=2x,直線x=a與x軸圍成的面積大于$\frac{16}{9}$的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“若A=B,則A⊆B”與其逆命題、否命題、逆否命題這四個(gè)命題中,真命題的個(gè)數(shù)是( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:$\frac{x^2}{k}+\frac{y^2}{4-k}=1$表示焦點(diǎn)x在軸上的橢圓,命題q:$\frac{x^2}{k-1}+\frac{y^2}{k-3}=1$表示雙曲線,p∨q為真,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某四棱錐的三視圖如圖所示,則該四棱錐的體積為$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出下列五個(gè)結(jié)論:
①從編號(hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號(hào)從小到大依次為007,032,…,則樣本中最大的編號(hào)是482;
②命題“?x∈R,均有x2-3x-2>0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
③將函數(shù)$y=\sqrt{3}cosx+sinx(x∈R)$的圖象向右平移$\frac{π}{6}$后,所得到的圖象關(guān)于y軸對(duì)稱;
④?m∈R,使$f(x)=({m-1})•{x^{{m^2}-4m+3}}$是冪函數(shù),且在(0,+∞)上遞增;
⑤如果{an}為等比數(shù)列,bn=a2n-1+a2n+1,則數(shù)列{bn}也是等比數(shù)列.
其中正確的結(jié)論為( 。
A.①②④B.②③⑤C.①③④D.①②⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案