(本小題滿分12分)一次智力競(jìng)賽中,共分三個(gè)環(huán)節(jié):選答、搶答、風(fēng)險(xiǎn)選答,在第一環(huán)節(jié)“選答”中.每個(gè)選手可以從6道題(其中4道選擇題,2道操作題)中任意選3道題作答,答對(duì)每道題可得100分;在第二環(huán)節(jié)“搶答”中,一共為參賽選手準(zhǔn)備了5道搶答題.答對(duì)一道得1 00分,在每一道題的搶答中,每位選手搶到的概率是相等的;在第三環(huán)節(jié)“風(fēng)險(xiǎn)選答”中,一共為選手準(zhǔn)備了A、B、C 三類不同的題目,選手每答對(duì)一道A類、B類、C類的題目將分別得到300分、200分、100分,但如果答錯(cuò),則相應(yīng)地要扣除300分、200分、100分.而選手答對(duì)一道A類、B類、C類題目的概率分別是0.6、0.7、0.8,現(xiàn)有甲、乙、丙三位選手參加比賽,試求:(1)乙選手在第一環(huán)節(jié)中,至少選中一道操作題的概率;

  (2)甲選手在第二環(huán)節(jié)中搶到的題數(shù)多于乙選手而不多于丙選手的概率;(3)在第三環(huán)節(jié)中,就每道題而言,丙選手選擇哪類題目得分的期望值更大.

(Ⅰ)    (Ⅱ)   (Ⅲ)丙應(yīng)選B類得分的切望值更大


解析:

(1)在第一環(huán)節(jié)中,乙選手從6道題目中任選3道至少有1道操作題的概率     (4分)

(2)在第二環(huán)節(jié)中,甲搶到的題目多于乙選手而不多于丙選手的情況有以下三種:甲、乙、丙三位選手搶到的題目的個(gè)數(shù)分別為1,0,4;2,0,3;2,1,2,故所求的概率

(8分)

(3)在第三個(gè)環(huán)節(jié)中,就每一次答題而言,丙選手得分是一個(gè)隨機(jī)變量,

若選A類題,其得分的期望是(分)

若選B類題,其得分的期望是(分)

若選C類題,其得分的期望是(分)

由于=,故丙應(yīng)選B類得分的切望值更大。(12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案