6.計(jì)算求值:
(1)64${\;}^{\frac{1}{3}}$-(-$\frac{2}{3}$)0+$\root{3}{125}$+lg2+lg50+2${\;}^{1+lo{g}_{2}3}$
(2)lg14-2lg$\frac{7}{3}$+lg7-lg18.

分析 (1)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)和指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可,
(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(1)原式=4-1+5+lg2+lg5+1+2×3=16,
(2)原式=lg14-2lg7+2lg3+lg7-lg18=lg14-lg7+lg9-lg18=lg2-lg2=0

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì)和指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如果實(shí)數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y≤0}\\{4x-y+4≥0}\end{array}\right.$,則(x-2)2+y2的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.對(duì)2000名學(xué)生進(jìn)行身體健康檢查,用分層抽樣的辦法抽取容量為200的樣本,已知樣本中女生比男生少6人,則該校共有男生( 。
A.1030人B.970人C.97人D.103人

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.為調(diào)查某社區(qū)年輕人的周末生活狀況,研究這一社區(qū)年輕人在周末的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)年輕人80人,得到下面的數(shù)據(jù)表:
休閑方式
性別
逛街上網(wǎng)合計(jì)
105060
101020
合計(jì)206080
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的年輕男性,設(shè)調(diào)查的3人在這一時(shí)間段以上網(wǎng)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“周末年輕人的休閑方式與性別有關(guān)系”?
參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖是某幾何體的三視圖,其中正視圖為正方形,俯視圖是腰長(zhǎng)為2的等腰直角三角形,則該幾何體的體積為$\underline{\frac{8}{3}}$;表面積為6+4$\sqrt{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.sin(7π-a)=$\frac{{\sqrt{3}}}{2}$,cos2a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.國(guó)家規(guī)定個(gè)人稿費(fèi)納稅辦法如下:不超過(guò)800元的不納稅;超過(guò)800元而不超過(guò)4000元的按超過(guò)800元部分的14%納稅;超過(guò)4000元的按全部稿費(fèi)的11%納稅,設(shè)扣稅前應(yīng)得稿費(fèi)為x元,應(yīng)納稅額為y元.
(1)求y關(guān)于x的函數(shù)解析式;
(2)已知某作家出版一本書,共納稅420元,求他的稿費(fèi)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(理科)定義:若各項(xiàng)為正實(shí)數(shù)的數(shù)列{an}滿足${a_{n+1}}=\sqrt{a_n}(n∈{N^*})$,則稱數(shù)列{an}為“算術(shù)平方根遞推數(shù)列”.
已知數(shù)列{xn}滿足${x_n}>0,n∈{N^*}$,且${x_1}=\frac{9}{2}$,點(diǎn)(xn+1,xn)在二次函數(shù)f(x)=2x2+2x的圖象上.
(1)試判斷數(shù)列{2xn+1}(n∈N*)是否為算術(shù)平方根遞推數(shù)列?若是,請(qǐng)說(shuō)明你的理由;
(2)記yn=lg(2xn+1)(n∈N*),求證:數(shù)列{yn}是等比數(shù)列,并求出通項(xiàng)公式y(tǒng)n;
(3)從數(shù)列{yn}中依據(jù)某種順序自左至右取出其中的項(xiàng)${y_{n_1}},{y_{n_2}},{y_{n_3}},…$,把這些項(xiàng)重新組成一個(gè)新數(shù)列{zn}:${z_1}={y_{n_1}},{z_2}={y_{n_2}},{z_3}={y_{n_3}},…$.
若數(shù)列{zn}是首項(xiàng)為${z_1}={(\frac{1}{2})^{m-1}}$、公比為$q=\frac{1}{2^k}(m,k∈{N^*})$的無(wú)窮等比數(shù)列,且數(shù)列{zn}各項(xiàng)的和為$\frac{16}{63}$,求正整數(shù)k、m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)A={1,2,3,4,5,6},B={4,5,6,7},則滿足S⊆A且S∩B=∅的集合S的個(gè)數(shù)是8.

查看答案和解析>>

同步練習(xí)冊(cè)答案