分析 (1)由a1+a3=30,3S1,2S2,S3成等差數(shù)列,可得${a}_{1}(1+{q}^{2})$=30,3S1+S3=2×2S2,化簡解出利用等比數(shù)列的通項公式即可得出.
(2)由bn+1-3bn=3an=3n+1,變形為$\frac{_{n+1}}{{3}^{n+1}}$-$\frac{_{n}}{{3}^{n}}$=1,利用等差數(shù)列的通項公式可得bn,再利用“錯位相減法”與等比數(shù)列的求和公式可得Bn.
(3)由題意可得:c2n-1=a3n-2=33n-2,c2n=a3n-1=33n-1,可得c2n-1+c2n=33n-2+33n-1=$\frac{4}{9}$×27n.對n分類討論即可得出.
解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,∵a1+a3=30,3S1,2S2,S3成等差數(shù)列,
∴${a}_{1}(1+{q}^{2})$=30,3S1+S3=2×2S2,化為:3a2=a3,解得q=3,a1=3.∴an=3n.
(2)∵bn+1-3bn=3an=3n+1,∴$\frac{_{n+1}}{{3}^{n+1}}$-$\frac{_{n}}{{3}^{n}}$=1.
∴數(shù)列$\{\frac{_{n}}{{3}^{n}}\}$是等差數(shù)列,公差為1,首項為1.
∴$\frac{_{n}}{{3}^{n}}$=1+(n-1)=n,∴bn=n•3n.
∴數(shù)列{bn}的前n項和Bn=3+2×32+…+n•3n,
3Bn=32+2×33+…+(n-1)•3n+n•3n+1,
∴-2Bn=3+32+…+3n-n•3n+1=$\frac{3({3}^{n}-1)}{3-1}$-n•3n+1=$\frac{1-2n}{2}$•3n+1-$\frac{3}{2}$,
∴Bn=$\frac{2n-1}{4}$×3n+1+$\frac{3}{4}$.
(3)由題意可得:c2n-1=a3n-2=33n-2,c2n=a3n-1=33n-1,
∴n=2k(k∈N*)時,c2n-1+c2n=33n-2+33n-1=$\frac{4}{9}$×27n.
Tn=T2k=$\frac{4}{9}$×$\frac{27(2{7}^{n}-1)}{27-1}$=$\frac{6(2{7}^{n}-1)}{13}$.
n=2k-1時,Tn=T2k-1=T2k-33n-1=$\frac{6(2{7}^{n}-1)}{13}$-33n-1=$\frac{5×{3}^{3n-1}-6}{13}$.
因此:n=2k(k∈N*)時,$\frac{{T}_{2k+1}}{{T}_{2k}}$=$\frac{\frac{5×{3}^{3n+2}-6}{13}}{\frac{6({3}^{3n}-1)}{13}}$=$\frac{15}{2}$+$\frac{13}{2}×\frac{1}{2{7}^{n}-1}$∈$(\frac{15}{2},\frac{31}{4}]$.
n=2k-1(k∈N*)時,$\frac{{T}_{2k}}{{T}_{2k-1}}$=$\frac{\frac{6(2{7}^{n}-1)}{13}}{\frac{5×{3}^{3n-1}-6}{13}}$=$\frac{18}{5-\frac{13}{2{7}^{n}-1}}$∈$(\frac{18}{5},4]$.
綜上可得:$\frac{{T}_{n+1}}{{T}_{n}}$>$\frac{18}{5}$.∴a的最大值為$\frac{18}{5}$.
點(diǎn)評 本題考查了遞推關(guān)系、等比數(shù)列與等差數(shù)列的通項公式及其求和公式、“錯位相減法”方法,考查了分類討論方法、推理能力與計算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,1] | C. | [0,1) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤0} | B. | {x|2≤x≤4} | C. | {x|0<x≤2或x≥4} | D. | {x|0≤x<2或x>4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com