13.已知$\frac{co{s}^{2}α-si{n}^{2}α}{sinα-cosα}$=$\frac{\sqrt{2}}{4}$,則sinαsin($\frac{π}{2}$+α)等于( 。
A.-$\frac{1}{4}$B.$\frac{5}{8}$C.-$\frac{7}{16}$D.$\frac{9}{16}$

分析 利用平方差公式化簡已知條件,利用誘導(dǎo)公式化簡所求的表達式,然后求出結(jié)果即可.

解答 解:$\frac{co{s}^{2}α-si{n}^{2}α}{sinα-cosα}$=$\frac{\sqrt{2}}{4}$,
可得cosα+sinα=$\frac{\sqrt{2}}{4}$,
兩邊平方可得:1+2sinαcosα=$\frac{1}{8}$,
則sinαsin($\frac{π}{2}$+α)=sinαcosα=$-\frac{7}{16}$.
故選:C.

點評 本題考查三角函數(shù)化簡求值誘導(dǎo)公式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<$\frac{π}{2}$,若cos$\frac{π}{3}cosφ-sin\frac{2π}{3}$sinφ=0,且圖象的兩條對稱軸間的最近距離是$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)若A,B,C是△ABC的三個內(nèi)角,且f(A)=-1,求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,已知cosA=$\frac{3}{5}$,cosB=$\frac{15}{17}$,則cosC等于( 。
A.-$\frac{13}{85}$B.$\frac{13}{85}$C.-$\frac{77}{85}$D.$\frac{77}{85}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\overrightarrow{a}=\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}}$,$\overrightarrow=\overrightarrow{{e}_{1}}+\frac{1}{3}\overrightarrow{{e}_{2}}$($\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$是同一平面內(nèi)的兩個不共線向量),則$\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}$=$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.計算:$(3\frac{3}{8})^{-\frac{2}{3}}-(5\frac{4}{9})^{0.5}$+$(0.008)^{-\frac{2}{3}}$÷$(0.02)^{-\frac{1}{2}}$×$(0.32)^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計算:$\sqrt{3}$÷$\sqrt{2}$×$\frac{14}{3-\sqrt{2}}$-($\sqrt{24}$+$\sqrt{12}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知等比數(shù)列{an}的各項都為正數(shù),其前n和為Sn,且a1+a7=9,a4=2$\sqrt{2}$,則S6=7$\sqrt{2}$+7或7$\sqrt{2}$+14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直三棱柱ABC-A1B1C1的各條棱長均為2,E為棱CC1的中點,則三棱錐A1-B1C1E的體積為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A、B、C的對邊分別為a,b,c,且滿足(2a-b)cosC=c•cosB,△ABC的面積S=10$\sqrt{3},c=7$.
(1)求角C;   
(2)若a>b,求a、b的值.

查看答案和解析>>

同步練習(xí)冊答案