【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=-1.其中>0且≠1.

(1)求f(2)+f(-2)的值;

(2)求f(x)的解析式;

(3)解關(guān)于x的不等式-1<f(x-1)<4.

【答案】(1)0;(2);(3)見(jiàn)解析

【解析】

(1)由函數(shù)是奇函數(shù),即可求得的值;

(2)設(shè),則,求得,根據(jù)函數(shù)是奇函數(shù),即可化簡(jiǎn)求得函數(shù)的解析式;

(3)分類討論,得出不等式組,利用對(duì)數(shù)函數(shù)的性質(zhì),即可求解.

(1)∵f(x)是奇函數(shù),

∴f(-2)=-f(2),即f(2)+f(-2)=0.

(2)當(dāng)x<0時(shí),-x>0,

∴f(-x)=a-x-1.

由f(x)是奇函數(shù),有f(-x)=-f(x),

∵f(-x)=a-x-1,

∴f(x)=-a-x+1(x<0).

∴所求的解析式為f(x)= .

(3)不等式等價(jià)于,

.

當(dāng)a>1時(shí),有,

注意此時(shí)loga2>0,loga5>0,可得此時(shí)不等式的解集為(1-loga2,1+loga5).

同理可得,當(dāng)0<a<1時(shí),不等式的解集為R.

綜上所述,當(dāng)a>1時(shí),不等式的解集為(1-loga2,1+loga5);

當(dāng)0<a<1時(shí),不等式的解集為 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(Ⅱ)當(dāng),即時(shí),函數(shù)上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時(shí),

由(Ⅰ)知上單調(diào)遞減,在上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時(shí),函數(shù)上單調(diào)遞減,

所以在區(qū)間上的最小值為.

綜上,當(dāng)時(shí),的最小值為;

當(dāng)時(shí),的最小值為;

當(dāng)時(shí),的最小值為.

型】解答
結(jié)束】
19

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).

1)求的方程;

2)若點(diǎn)上,過(guò)的兩弦,若,求證: 直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的最大值;

(2)當(dāng)時(shí),函數(shù)有最小值. 的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,底面為正方形,四邊形是矩形,平面平面.

(1)求證:平面平面;

(2)若過(guò)直線的一個(gè)平面與線段分別相交于點(diǎn) (點(diǎn)與點(diǎn)均不重合),求證: ;

(3)判斷線段上是否存在一點(diǎn),使得平面平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.點(diǎn)為圓上任意一點(diǎn), 為坐標(biāo)原點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線經(jīng)過(guò)點(diǎn)且與橢圓相切, 與圓相交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,證明:直線與橢圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(1)求拋物線C的方程;
(2)設(shè)直線y=kx+b與拋物線C交于A(x1 , y1),B(x2 , y2),且|y1﹣y2|=2,過(guò)弦AB中點(diǎn)M作平行于x軸的直線交拋物線于點(diǎn)D,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對(duì)任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2為函數(shù)f(x)的兩個(gè)零點(diǎn),且x2﹣x1=2,當(dāng)x∈(x1 , x2)時(shí),g(x)=﹣f(x)+2(x2﹣x)的最大值為,當(dāng)a≥2時(shí),求h(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一網(wǎng)站營(yíng)銷部為統(tǒng)計(jì)某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購(gòu)金額情況,如下表:

若將當(dāng)日網(wǎng)購(gòu)金額不小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)探者”.已知“網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)探者”人數(shù)的比例為2:3.

(1)確定的值,并補(bǔ)全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購(gòu)金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個(gè)不低于2千元,則該網(wǎng)店當(dāng)日被評(píng)為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評(píng)為“皇冠店”.

查看答案和解析>>

同步練習(xí)冊(cè)答案