【題目】為了解高中學(xué)生對數(shù)學(xué)課是否喜愛是否和性別有關(guān),隨機(jī)調(diào)查220名高中學(xué)生,將他們的意見進(jìn)行了統(tǒng)計,得到如下的列聯(lián)表.
喜愛數(shù)學(xué)課 | 不喜愛數(shù)學(xué)課 | 合計 | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合計 | 160 | 60 | 220 |
(1)根據(jù)上面的列聯(lián)表判斷,能否有的把握認(rèn)為“喜愛數(shù)學(xué)課與性別”有關(guān);
(2)為培養(yǎng)學(xué)習(xí)興趣,從不喜愛數(shù)學(xué)課的學(xué)生中進(jìn)行進(jìn)一步了解,從上述調(diào)查的不喜愛數(shù)學(xué)課的人員中按分層抽樣抽取6人,再從這6人中隨機(jī)抽出2名進(jìn)行電話回訪,求抽到的2人中至少有1名“男生”的概率.
參考公式:.
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
【答案】(1)有(2)
【解析】
(1)由列聯(lián)表數(shù)據(jù),根據(jù)參考公式求出觀測值,結(jié)合提供數(shù)據(jù),即可得出結(jié)論;
(2)分層抽樣男生應(yīng)抽取2人,女生應(yīng)抽取4人,按男女生編號,列出從6人中任取2人的所有情況,確定至少有1名男生的抽取方法個數(shù),由古典概型的概率公式,即可求解.
(1)根據(jù)列聯(lián)表數(shù)據(jù),
計算
,
所以有的把握認(rèn)為“喜愛數(shù)學(xué)課與性別有關(guān)”.
(2)從不喜愛數(shù)學(xué)課的人員中按分層抽樣法抽取6人,
男生應(yīng)抽取2人,設(shè)為A,B,女生應(yīng)抽取4人,設(shè)為a,b,c,d,
從中隨機(jī)抽出2人,總的情況為,,,
,,,,,,
,,,,,,共15種,
至少有1名男生的情況數(shù)為9,
所以根據(jù)古典概型的公式,得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,動直線與橢圓交于點(diǎn),與軸交于點(diǎn).為坐標(biāo)原點(diǎn),是中點(diǎn).
(1)若,求的面積;
(2)若試探究是否存在常數(shù),使得是定值?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為直角梯形,∥,,,,為的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)參加某個知識答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進(jìn)行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學(xué)各自從備選的5道不同題中隨機(jī)抽出3道題進(jìn)行答題,答對一題加10分,答錯一題(不答視為答錯)減5分,已知甲能答對備選5道題中的每道題的概率都是,乙恰能答對備選5道題中的其中3道題;第一輪答題完畢后進(jìn)行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對,繼續(xù)答下一題…,直到答錯,則換人(換莊)答下一題…以此類推.例如若甲首先坐莊,則他答第1題,若答對繼續(xù)答第2題,如果第2題也答對,繼續(xù)答第3題,直到他答錯則換成乙坐莊開始答下一題,…直到乙答錯再換成甲坐莊答題,依次類推兩人共計答完20道題游戲結(jié)束,假設(shè)由第一輪答題得分期望高的同學(xué)在第二輪環(huán)節(jié)中最先開始作答,且記第道題也由該同學(xué)(最先答題的同學(xué))作答的概率為(),其中,已知供甲乙回答的20道題中,甲,乙兩人答對其中每道題的概率都是,如果某位同學(xué)有機(jī)會答第道題且回答正確則該同學(xué)加10分,答錯(不答視為答錯)則減5分,甲乙答題相互獨(dú)立;兩輪答題完畢總得分高者勝出.回答下列問題
(1)請預(yù)測第二輪最先開始作答的是誰?并說明理由
(2)①求第二輪答題中,;
②求證為等比數(shù)列,并求()的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,關(guān)于的方程有兩個不同的實數(shù)解,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動時,點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若直線與曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(mR)的導(dǎo)函數(shù)為.
(1)若函數(shù)存在極值,求m的取值范圍;
(2)設(shè)函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個極值點(diǎn),求的取值范圍;
(2)若兩個極值點(diǎn),試判斷與的大小關(guān)系并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)P(4,0)的動直線與拋物線C:交于點(diǎn)A,B,且(點(diǎn)O為坐標(biāo)原點(diǎn)).
(1)求拋物線C的方程;
(2)當(dāng)直線AB變動時,x軸上是否存在點(diǎn)Q使得點(diǎn)P到直線AQ,BQ的距離相等,若存在,求出點(diǎn)Q坐標(biāo),若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com