已知橢圓 的離心率為,過的左焦點的直線被圓截得的弦長為.
(1)求橢圓的方程;
(2)設(shè)的右焦點為,在圓上是否存在點,滿足,若存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,說明理由.
(1);(2)存在.
解析試題分析:本題主要考查橢圓的標準方程及其幾何性質(zhì),點到直線的距離公式、垂徑定理、兩圓的位置關(guān)系等基礎(chǔ)知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,利用橢圓的左焦點坐標、離心率聯(lián)立得到橢圓的基本量a,b,c,從而得到橢圓的標準方程;第二問,先利用點到直線的距離公式計算出點到直線的距離,再利用垂徑定理求出圓的半徑,從而得到圓的具體方程,假設(shè)圓上存在點P滿足條件,利用兩點間距離公式列出方程,經(jīng)整理得到一個新的圓,利用2個圓心的距離和半徑的關(guān)系判斷出2個圓相交,所以說明存在兩個不同的點P.
試題解析:因為直線的方程為,
令,得,即 1分
∴ ,又∵,∴ ,
∴ 橢圓的方程為. 4分
(2)存在點P,滿足
∵ 圓心到直線的距離為,
又直線被圓截得的弦長為,
∴由垂徑定理得,
故圓的方程為. 8分
設(shè)圓上存在點,滿足即,
且的坐標為,
則,
整理得,它表示圓心在,半徑是的圓。
∴ 12分
故有,即圓與圓相交,有兩個公共點。
∴圓上存在兩個不同點,滿足. 14分
考點:橢圓的標準方程及其幾何性質(zhì),點到直線的距離公式、垂徑定理、兩圓的位置關(guān)系.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓 的離心率為 ,且過點
(Ⅰ)求橢圓的標準方程;
(Ⅱ)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若 .
(i)求 的最值:
(i i)求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為和,且||=2,
點(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:和直線L:="1," 橢圓的離心率,坐標原點到直線L的距離為。
(1)求橢圓的方程;
(2)已知定點,若直線與橢圓C相交于M、N兩點,試判斷是否存在值,使以MN為直徑的圓過定點E?若存在求出這個值,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點A(-1,0),B(1,-1)和拋物線.,O為坐標原點,過點A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點Q,如圖.
(1)證明: 為定值;
(2)若△POM的面積為,求向量與的夾角;
(3)證明直線PQ恒過一個定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定點A(1,0),B (2,0) .動點M滿足,
(1)求點M的軌跡C;
(2)若過點B的直線l(斜率不等于零)與(1)中的軌跡C交于不同的兩點E、F
(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C:的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點,若AB的垂直平分線與C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
在下列命題中:
①方程|x|+|y|=1表示的曲線所圍成區(qū)域面積為2;
②與兩坐標軸距離相等的點的軌跡方程為y=±x;[來源:Z,xx,k.Com]
③與兩定點(-1,0)、(1,0)距離之和等于1的點的軌跡為橢圓;
④與兩定點(-1,0)、(1,0)距離之差的絕對值等于1的點的軌跡為雙曲線.
正確的命題的序號是________.(注:把你認為正確的命題序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com