15.若${(1-2x)^{2013}}={a_0}+{a_1}x+{a_2}{x^2}+…{a_n}{x^n}$(x∈R),則$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…\frac{{{a_{2013}}}}{{{2^{2014}}}}$值為( 。
A.1B.0C.-$\frac{1}{2}$D.-1

分析 根據(jù)題意,先令x=0,求出a0,再令x=$\frac{1}{2}$,求出$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2013}}{{2}^{2013}}$=-1,問題得以解決

解答 解:${(1-2x)^{2013}}={a_0}+{a_1}x+{a_2}{x^2}+…{a_n}{x^n}$(x∈R),
令x=0,則a0=1,
令x=$\frac{1}{2}$時,(1-2×$\frac{1}{2}$)2013=a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2013}}{{2}^{2013}}$=0,
∴$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2013}}{{2}^{2013}}$=-1,
∴$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…\frac{{{a_{2013}}}}{{{2^{2014}}}}$=-$\frac{1}{2}$,
故選:C.

點評 本題考查二項式系數(shù)的性質(zhì),解題中采用的賦值法,是常見的解法,需要特別注意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某商場一周內(nèi)被消費者投訴的次數(shù)用ξ表示.據(jù)統(tǒng)計,隨機(jī)變量ξ的概率分布列如表,則x的值為( 。
ξ
 
0123
P0.10.32x
 
x
A.0.2B.0.4C.1.5D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow m=({sinA,cosA}),\overrightarrow n=(\sqrt{3},1),\overrightarrow m•\overrightarrow n=\sqrt{3}$,且A是銳角.
(1)求角A的大小;
(2)求函數(shù)f(x)=cos2x+4sinAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線xcosα+ysinα-1=0與圓(x-1)2+(y-sinα)2=$\frac{1}{16}$相切,α為銳角,則斜率k=( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(ω>0,0<φ<π),對于任意x∈R滿足f(-x)=f(x),且相鄰兩條對稱軸間的距離為$\frac{π}{2}$.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求函數(shù)$y=f(x)+f({x+\frac{π}{4}})$的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是( 。
A.(0,3)B.(1,4)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=sin2x+sinx-2的值域為(  )
A.[-$\frac{9}{4}$,0]B.[-2,$\frac{1}{4}$]C.[-2,0]D.[-$\frac{9}{4}$,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,既是偶函數(shù)又有零點的是( 。
A.$y={x^{\frac{1}{2}}}$B.y=tanxC.y=ex+e-xD.y=ln|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.為了了解某校學(xué)生一學(xué)期內(nèi)的課外閱讀情況,現(xiàn)隨機(jī)統(tǒng)計了n名學(xué)生的課外閱讀時間,所得樣本數(shù)據(jù)都在[50,150]內(nèi)(單位:小時),其頻率分布直方圖如圖所示,若該樣本在[125,150]內(nèi)的頻數(shù)為100,則n的值為500.

查看答案和解析>>

同步練習(xí)冊答案