已知是橢圓的兩個(gè)焦點(diǎn),P為橢圓上的一點(diǎn),且.若的面積為9,則           .
3.
由橢圓焦點(diǎn)三角形的面積公式可知,
所以.     
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e,若橢圓上存在點(diǎn)P,使得,則該離心率e的取值范圍是__________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存直線,滿足?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

與橢圓有公共焦點(diǎn),且離心率的雙曲線的方程是
A.B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓O:,點(diǎn)O為坐標(biāo)原點(diǎn),一條直線:與圓O相切并與橢圓交于不同的兩點(diǎn)A、B
(1)設(shè),求的表達(dá)式;
(2)若,求直線的方程;
(3)若,求三角形OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形ABMN中,∠NAB=90°,AN∥BM,AB=2,AN=,BM=,橢圓C以A,B為焦點(diǎn)且過(guò)點(diǎn)N.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓C方程;
(2)若點(diǎn)E滿足,問(wèn)是否存在不平行AB的直線L與橢圓C交于P,Q兩點(diǎn),且|PE|=|QE|,若存在,求出直線L與AB夾角的范圍;若不存在,說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓.,分別為橢圓的左,右焦點(diǎn),, 分別為橢圓的左,右頂點(diǎn).過(guò)右焦點(diǎn)且垂直于軸的直線與橢圓在第一象限的交點(diǎn)為.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 直線與橢圓交于,兩點(diǎn), 直線交于點(diǎn).當(dāng)直線變化時(shí), 點(diǎn)是否恒在一條定直線上?若是,求此定直線方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn), 為橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若均不重合,設(shè)直線的斜率分別為,證明:為定值;
(Ⅲ)為過(guò)且垂直于軸的直線上的點(diǎn),若,求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的標(biāo)準(zhǔn)方程為,則橢圓的離心率為(       )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案