【題目】已知函數(shù)的導函數(shù)為,.
(1)當時,求函數(shù)的單調區(qū)間;
(2)若對滿足的一切的值,都有,求實數(shù)的取值范圍;
(3)若對一切恒成立,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知在數(shù)列{an}中,Sn為其前n項和,若an>0,且4Sn=an2+2an+1(n∈N*),數(shù)列{bn}為等比數(shù)列,公比q>1,b1=a1,且2b2,b4,3b3成等差數(shù)列.
(1)求{an}與{bn}的通項公式;
(2)令cn= ,若{cn}的前項和為Tn,求證:Tn<6.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.現(xiàn)甲、乙兩警員同時從A地出發(fā)勻速前往B地,經(jīng)過t小時,他們之間的距離為(單位:千米).甲的路線是AB,速度是5千米/小時,乙的路線是ACB,速度是8千米/小時,乙到達B地后原地等待,設時,乙到達C地.
(1)求與的值;
(2)已知警員的對講機的有效通話距離是3千米.當時,求的表達式,并判斷在上的最大值是否超過3?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線:(為參數(shù)),曲線:(為參數(shù)).
(1)設與相交于,兩點,求;
(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是數(shù)列的前n項和,滿足,正項等比數(shù)列的前n項和為,且滿足.
(Ⅰ) 求數(shù)列{an}和{bn}的通項公式; (Ⅱ) 記,求數(shù)列{cn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是邊長為3的正方形, 平面, 平面, .
(1)證明:平面平面;
(2)在上是否存在一點,使平面將幾何體分成上下兩部分的體積比為?若存在,求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在上為增函數(shù),且,為常數(shù), .
(1)求的值;(2)若在上為單調函數(shù),求的取值范圍;
(3)設,若在上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線().
(1)證明:直線過定點;
(2)若直線不經(jīng)過第四象限,求的取值范圍;
(3)若直線軸負半軸于,交軸正半軸于,△的面積為(為坐標原點),求的最小值,并求此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com