16.在△ABC中,a,b,c分別為角A,B,C的對邊,$B=\frac{2π}{3}$,若a2+c2=4ac,則$\frac{{sin({A+C})}}{sinAsinC}$=$\frac{10\sqrt{3}}{3}$.

分析 由余弦定理可得:b2=a2+c2-2accosB=4ac-2ac×$(-\frac{1}{2})$=5ac,再利用正弦定理可得sin2B=5sinAsinC.即可得出.

解答 解:由余弦定理可得:b2=a2+c2-2accosB=4ac-2ac×$(-\frac{1}{2})$=5ac,
∴sin2B=5sinAsinC.
∴$\frac{{sin({A+C})}}{sinAsinC}$=$\frac{5sinB}{si{n}^{2}B}$=$\frac{5}{sinB}$=$\frac{10\sqrt{3}}{3}$.
故答案為:$\frac{{10\sqrt{3}}}{3}$.

點評 本題考查了正弦定理、余弦定理、和差公式、三角形內(nèi)角和定理與誘導(dǎo)公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點$A(\sqrt{3},0)$,點P是圓${(x+\sqrt{3})^2}+{y^2}=16$上的任意一點,設(shè)Q為該圓的圓心,并且線段PA的垂直平分線與直線PQ交于點E.
(1)求點E的軌跡方程;
(2)已知M,N兩點的坐標(biāo)分別為(-2,0),(2,0),點T是直線x=4上的一個動點,且直線TM,TN分別交(1)中點E的軌跡于C,D兩點(M,N,C,D四點互不相同),證明:直線CD恒過一定點,并求出該定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知a,b∈R,a>b,若2a2-ab-b2-4=0,則2a-b的最小值為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線ax+by+1=0與圓x2+y2=1相切,則a+b+ab的最大值為( 。
A.1B.-1C.$\sqrt{2}$+$\frac{1}{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=cos2x,二次函數(shù)g(x)滿足g(0)=4,且對任意的x∈R,不等式-3x2-2x+3≤g(x)≤4x+6成立,則函數(shù)f(x)+g(x)的最大值為( 。
A.5B.6C.4D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在2013年至2016年期間,甲每年6月1日都到銀行存入m元的一年定期儲蓄,若年利率為q保持不變,且每年到期的存款本息自動轉(zhuǎn)為新的一年定期,到2017年6月1日甲去銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是(  )
A.m(1+q)4B.m(1+q)5C.$\frac{m[(1+q)^{4}-(1+q)]}{q}$元D.$\frac{m[(1+q)^{5}-(1+q)]}{q}$元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,過點F(c,0)作直線交雙曲線C的兩條漸近線于A,B兩點,若B為FA的中點,且OA=c,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$2\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,復(fù)數(shù)z滿足z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,則復(fù)數(shù)z的虛部等于( 。
A.-$\frac{\sqrt{2}}{3}$B.$\sqrt{2}$C.2D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C的中心在原點,焦點在y軸上,若雙曲線C的一條漸近線與直線$\sqrt{2}$x-y-1=0平行,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

同步練習(xí)冊答案