5.設(shè)i是虛數(shù)單位,復數(shù)z滿足z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,則復數(shù)z的虛部等于(  )
A.-$\frac{\sqrt{2}}{3}$B.$\sqrt{2}$C.2D.-$\frac{2}{3}$

分析 z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,可得z•(1+$\sqrt{2}$i)(1-$\sqrt{2}$i)=-$\sqrt{2}$i(1-$\sqrt{2}$i),化簡即可得出.

解答 解:z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,∴z•(1+$\sqrt{2}$i)(1-$\sqrt{2}$i)=-$\sqrt{2}$i(1-$\sqrt{2}$i),
∴3z=-2-$\sqrt{2}$i,即z=-$\frac{2}{3}$-$\frac{\sqrt{2}}{3}$i.
則復數(shù)z的虛部等于-$\frac{\sqrt{2}}{3}$.
故選:A.

點評 本題考查了復數(shù)的運算法則、虛部的定義、共軛復數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.計算定積分:
(1)${∫}_{1}^{2}$$\frac{1}{x}$dx
(2)${∫}_{0}^{\frac{π}{6}}$4cosxdx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,a,b,c分別為角A,B,C的對邊,$B=\frac{2π}{3}$,若a2+c2=4ac,則$\frac{{sin({A+C})}}{sinAsinC}$=$\frac{10\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)全集U=R,集合A={x|x2-3x≥0},B={x∈N|x≤3},則(∁UA)∩B等于( 。
A.B.{0,1}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若函數(shù)$f(x)=a({x-2}){e^x}+lnx+\frac{1}{x}$在(0,2)上存在兩個極值點,則a的取值范圍是(  )
A.(-∞,-$\frac{1}{4{e}^{2}}$)B.(-∞,-$\frac{1}{e}$)
C.(-∞,-$\frac{1}{e}$)∪(-$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$)D.(-e,-$\frac{1}{4{e}^{2}}$)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上任意一點M與左右頂點A1、A2連線的斜率之積為$\frac{3}{4}$,則雙曲線的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{5}{4}$C.$\frac{\sqrt{7}}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=$\frac{{e}^{x}-a}{x}$-alnx(e為自然對數(shù)的底數(shù)).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=ex(x2-3x+3),當a≤1時,若存在x1∈(0,+∞),使得對任意x2∈(0,+∞),都有f(x1)≤g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)集合A={-1,0,1,2},B={x|-2≤x≤1},則A∩B=(  )
A.{-2,-1,0,1,2}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在平面直角坐標系xOy中,已知雙曲線的漸近線方程為y=±x,且它的一個焦點與拋物線x2=8y的焦點重合,則該雙曲線的方程為$\frac{{y}^{2}}{2}-\frac{{x}^{2}}{2}=1$.

查看答案和解析>>

同步練習冊答案