11.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=3x+1-3,則f(-1)的值為( 。
A.-6B.-3C.-2D.6

分析 根據(jù)函數(shù)奇偶性的性質(zhì),將f(-1)轉(zhuǎn)化為f(1)進(jìn)行求解即可.

解答 解:∵f(x)為定義在R上的奇函數(shù),
∴f(-1)=-f(1),
∵當(dāng)x≥0時(shí),f(x)=3x+1-3,
∴f(1)=6,
即f(-1)=-f(1)=-6.
故選A.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用,利用函數(shù)奇偶性的性質(zhì)將f(-1)轉(zhuǎn)化為f(1)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=|x-1|+|x+2|.
(Ⅰ)解不等式f(x)≥5;
(Ⅱ)若關(guān)于x的不等式f(x)>a2-2a對(duì)任意的x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an+n.
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)設(shè)bn=log2(1-an),求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知O是邊長(zhǎng)為2的等邊△ABC的重心,則 ($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在鈍角△ABC中a<b<c,且a=2,b=3,則c的取值范圍是$(\sqrt{13},5)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.方程x2-2x+m=0在(-1,5)有一根,實(shí)數(shù)m的取值范圍為-15<m≤-3或m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(2,1)
求:(1)|$\overrightarrow{a}+\overrightarrow$|
(2)求x的值使x$\overrightarrow{a}$+3$\overrightarrow$與3$\overrightarrow{a}$-2$\overrightarrow$為平行向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,四棱錐P-ABCD底面為正方形,已知PD⊥平面ABCD,PD=AD,點(diǎn)M為線段PA上任意一點(diǎn)(不含端點(diǎn)),點(diǎn)N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD;
(2)若M為線段PA中點(diǎn),求直線PB與平面AMN所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.A是集合{1,2,3,…,14}的子集,從A中任取3個(gè)元素,由小到大排列之后都不能構(gòu)成等差數(shù)列,則A中元素個(gè)數(shù)的最大值是8.

查看答案和解析>>

同步練習(xí)冊(cè)答案