設數(shù)列{an}滿足a1=1,a2=2,an=an-1+an-2(n>2,n∈N*),又通過公式bn=
an+1
an
構(gòu)造一個新的數(shù)列bn,則b5=(  )
A、
5
3
B、
5
8
C、
8
5
D、
13
8
分析:由a1=1,a2=2,an=an-1+an-2遞推出a3=3,a4=5,a5=8,a6=13求解.
解答:解:∵a1=1,a2=2,an=an-1+an-2
∴a3=3,a4=5,a5=8,a6=13
bn=
an+1
an

b5=
a6
a5
=
13
8

故選D
點評:本題主要考查選擇題時,可利用規(guī)律,推知相關(guān)的結(jié)論,不用化為一般性的結(jié)論.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數(shù)列{an}的通項公式為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•日照一模)若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準等差數(shù)列.如:若cn=
4n-1,當n為奇數(shù)時
4n+9,當n為偶數(shù)時.
則{cn}
是公差為8的準等差數(shù)列.
(I)設數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準等差數(shù)列,并求其通項公式:
(Ⅱ)設(I)中的數(shù)列{an}的前n項和為Sn,試研究:是否存在實數(shù)a,使得數(shù)列Sn有連續(xù)的兩項都等于50.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•日照一模)若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準等差數(shù)列.如數(shù)列cn:若cn=
4n-1,當n為奇數(shù)時
4n+9,當n為偶數(shù)時
,則數(shù)列{cn}是公差為8的準等差數(shù)列.設數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準等差數(shù)列;
(Ⅱ)求證:{an}的通項公式及前20項和S20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=1,a2+a4=6,且對任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx滿足f′(
π
2
)=0
cn=an+
1
2an
,則數(shù)列{cn}的前n項和Sn為(  )
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足:a1=2,an+1=1-
1
an
,令An=a1a2an,則A2013
=( 。

查看答案和解析>>

同步練習冊答案