10.命題“?x>0,$\frac{x-2}{x}$≥0”的否定是( 。
A.?x≤0,$\frac{x-2}{x}$<0B.?x>0,$\frac{x-2}{x}$<0C.?x>0,0≤x<2D.?x>0,0<x<2

分析 根據(jù)已知中的原命題,結(jié)合全稱命題否定的方法,可得答案.

解答 解:命題“?x>0,$\frac{x-2}{x}$≥0”的否定是?x>0,0≤x<2
故選:C

點評 本題考查的知識點是全稱命題,命題的否定,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓A,B滿足:過橢圓C的右焦點$F(\sqrt{2},0)$且經(jīng)過短軸端點的直線的傾斜角為$\frac{π}{4}$.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點,若點A在直線y=2上,點B在橢圓C上,且OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.動點P滿足$\sqrt{(x-2)^{2}+{y}^{2}}$+$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$=2$\sqrt{3}$
(1)求動點P的軌跡F1,F(xiàn)2的方程;
(2)設(shè)直線l與曲線C交于A,B兩點,坐標(biāo)原點O到直線l的距離為$\frac{\sqrt{3}}{2}$,求△OAB面 積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一長方體,其長、寬、高分別為3,1,$\sqrt{6}$,則該長方體的外接球的表面積是( 。
A.16πB.64πC.$\frac{32π}{3}$D.$\frac{252π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f ( x)=ax3+bx2+cx+d 的圖象如圖所示,則$\frac{b+1}{a+1}$的取值范圍是( 。 
A.(-$\frac{3}{2}$,$\frac{1}{2}$ )B.(-$\frac{2}{5}$,1)C.(-$\frac{1}{2}$,$\frac{3}{2}$)D.(-$\frac{3}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有$f[{f(x)+{{log}_{\frac{1}{3}}}x}]=4$,且方程|f(x)-3|=x3-6x2+9x-4+a在區(qū)間[0,3]上有兩解,則實數(shù)a的取值范圍是( 。
A.0<a≤5B.a<5C.0<a<5D.a≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,飛機(jī)的航線和山頂在同一個鉛垂平面內(nèi),已知飛機(jī)的高度為海拔15000 m,速度為1000 km/h,飛行員先看到山頂?shù)母┙菫?5°,經(jīng)過108s后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹?5-10$\sqrt{3}$km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有-段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,二馬相逢,問:需9日相逢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足xf'(x)+f(x)>x,則不等式$({x-4})f({x-4})-4f(4)<\frac{x^2}{2}-4x$的解集為(-∞,8).

查看答案和解析>>

同步練習(xí)冊答案