設(shè)變量x,y滿足約束條件
y≤x
x+y≤1
y≥-1
,則z=
2y
4x
的最大值為( 。
A、
1
32
B、
2
2
C、2
D、4
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,由z=
2y
4x
得到
log
z
2
=y-2x,令z′=
log
z
2
=y-2x,從而有y=2x+z′,通過圖象得到z′的最大值,從而求出z的最大值.
解答: 解:根據(jù)約束條件畫出可行域
由z=
2y
4x
得到
log
z
2
=y-2x,
求z的最大值即求
log
z
2
的最大值,
令z′=
log
z
2
=y-2x,從而有y=2x+z′,
顯然圖象過(-1,-1)時(shí),z′取到最大值,z′最大值=1,
log
z
2
=1,解得:z=2,
故選:C.
點(diǎn)評:本題主要考查了簡單的線性規(guī)劃,考查了轉(zhuǎn)化思想,本題屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
sin(180°-α)•sin(270°-α)
sin(90°+α)•tan(360°-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2,3},在集合A的所有非空子集中任取一個(gè)集合B.
(Ⅰ)記事件M為“集合B含有元素2”,求事件M發(fā)生的概率;
(Ⅱ)記事件N為“在集合B中任取一個(gè)元素a,都有4-a∈B”,求事件N發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與直線3x+4y+2=0平行的直線方程是( 。
A、3x+4y-6=0
B、6x+8y+4=0
C、4x-3y+5=0
D、4x-3y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)在[0,+∞)上遞減,且f(
1
2
)=0,則滿足f(x+1)<0的x的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,b2+c2-bc=a2,則角A等于( 。
A、
π
3
B、
π
4
C、
π
6
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,2)、B(4,1)、C(-6,9).
(1)若AD是BC邊上的高,求向量
AD
的坐標(biāo);
(2)若點(diǎn)E在x軸上,使△BCE為鈍角三角形,且∠BEC為鈍角,求點(diǎn)E橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an} 的前n項(xiàng)和為Sn,若S3=1,S6=3,則a10+a11+a12=( 。
A、6B、16C、8D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對邊長分別為a、b、c,已知
3
sin2B=2sin2B
(Ⅰ)求角B的值
(Ⅱ)若a=2,A=
π
4
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案