已知等比數(shù)列{an} 的前n項和為Sn,若S3=1,S6=3,則a10+a11+a12=( 。
A、6B、16C、8D、32
考點(diǎn):等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:由等比數(shù)列的性質(zhì)結(jié)合S3=1,S6=3求得S12,則a10+a11+a12=S12-S9
解答: 解:在等比數(shù)列{an}中,由等比數(shù)列的性質(zhì)可得,
S3,S6-S3,S9-S6,S12-S9仍然構(gòu)成等比數(shù)列,
則(3-1)2=1×(S9-3),解得:S9=7.
再由(7-3)2=(3-1)(S12-7),解得:S12=15.
∴a10+a11+a12=S12-S9=15-7=8.
故選:C.
點(diǎn)評:本題考查了等比數(shù)列的性質(zhì),考查了等比數(shù)列的前n項和,是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x-2),且f(x)在[-5,-4]上是減函數(shù),又α、β是銳角三角形的兩個內(nèi)角,則(  )
A、f(cosα)<f(cosβ)
B、f(sinβ)>f(cosα)
C、f(sinα)<f(cosβ)
D、f(sinα)<f(sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
y≤x
x+y≤1
y≥-1
,則z=
2y
4x
的最大值為( 。
A、
1
32
B、
2
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
b
,
c
均為單位向量,且
a
*
b
=0,(
a
-
c
)*(
b
-
c
)≤0,則丨
a
+
b
-
c
|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+y-2≥0
x-y-2≤0
y≥0
,則x+2y取得最小值時x,y的值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x0是方程ex=3-2x的根,則x0屬于區(qū)間( 。
A、(-1,0)
B、(0,
1
2
C、(
1
2
,1)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的角A,B,C的對邊分別為a,b,c,已知cos(A-B)+cosC=1,a=2b,求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)P(-1,3).
(Ⅰ)若直線l與直線m:3x+y-1=0垂直,求直線l的一般式方程;
(Ⅱ)寫出(Ⅰ)中直線l的截距式方程,并求直線l與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x-cos2x的導(dǎo)數(shù)是(  )
A、2
2
cos(2x-
π
4
)
B、cos2x-sin2x
C、sin2x+cos2x
D、2
2
cos(2x+
π
4
)

查看答案和解析>>

同步練習(xí)冊答案