已知某種產(chǎn)品的數(shù)量x(百件)與其成本y(千元)之間的函數(shù)關(guān)系可以近似用y=ax2+bx+c表示,其中a,b,c為待定常數(shù),今有實(shí)際統(tǒng)計(jì)數(shù)據(jù)如下表:
產(chǎn)品數(shù)量x(百件) 6 10 20
成本合計(jì)y(千元) 104 160 370
(1)試確定成本函數(shù)y=f(x);
(2)已知每件這種產(chǎn)品的銷售價(jià)為200元,求利潤(rùn)函數(shù)p=p(x);
(3)據(jù)利潤(rùn)函數(shù)p=p(x)確定盈虧轉(zhuǎn)折時(shí)的產(chǎn)品數(shù)量.(即產(chǎn)品數(shù)量等于多少時(shí),能扭虧為盈或由盈轉(zhuǎn)虧)
分析:(1)把表格中的數(shù)據(jù)對(duì)代入二次函數(shù)解析式,求解a,b,c的值,則成本函數(shù)可求;
(2)由收入減去成本得到利潤(rùn)函數(shù)p=p(x);
(3)直接求解利潤(rùn)函數(shù)對(duì)應(yīng)的方程,得到函數(shù)的兩個(gè)零點(diǎn),由此可以得到盈利和虧損時(shí)的產(chǎn)品數(shù)量的范圍.
解答:解:(1)將表格中相關(guān)數(shù)據(jù)代入y=ax2+bx+c,
36a+6b+c=104
100a+10b+c=160
400a+20b+c=370
,
解得a=
1
2
,b=6,c=50.
∴y=f(x)=
1
2
x2+6x+50(x≥0);
(2)∵x(百件)在每件銷售價(jià)為200元時(shí)的收入為200(百元)=20(千元),
∴p=p(x)
=20x-f(x)
=20x-(
1
2
x2+6x+50)

=-
1
2
x2+14x-50(x≥0);
(3)令p(x)=0,即-
1
2
x2+14x-50=0,
解得x=14±4
6
,即x1=4.2,x2=23.8,
故4.2<x<23.8時(shí),p(x)>0;x<4.2或x>23.8時(shí),p(x)<0,
∴當(dāng)產(chǎn)品數(shù)量為420件時(shí),能扭虧為盈;
當(dāng)產(chǎn)品數(shù)量為2380件時(shí)由盈變虧.
點(diǎn)評(píng):本題考查了函數(shù)模型的選擇及應(yīng)用,考查了簡(jiǎn)單的數(shù)學(xué)建模思想方法,解答此題的關(guān)鍵是注意單位的統(tǒng)一,是中檔題,也是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某種產(chǎn)品的數(shù)量x(百件)與其成本y(千元)之間的函數(shù)解析式可以近似的用y=ax2+bx+c表示,其中a,b,c為代定常數(shù),今有實(shí)際統(tǒng)計(jì)數(shù)據(jù)如下表
產(chǎn)品數(shù)量 x(百件) 6 10 20
成本合計(jì) y(千元) 104 160 370
(I)試確定成本y關(guān)于產(chǎn)品數(shù)量x的函數(shù)y=f(x).
(II)已知每件這種產(chǎn)品的銷售價(jià)為200元,求利潤(rùn)P關(guān)于產(chǎn)品數(shù)量X的函數(shù)P=g(x) (利潤(rùn)=收入-本)并確定產(chǎn)品數(shù)量為多少時(shí),利潤(rùn)最大?確定盈虧轉(zhuǎn)折時(shí)的產(chǎn)品數(shù)量(即產(chǎn)品數(shù)量為多少時(shí),能扭虧為盈或由盈變虧).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠今年1月、2月、3月生產(chǎn)某種產(chǎn)品的數(shù)量分別為1萬(wàn)件、1.2萬(wàn)件、1.3萬(wàn)件,為了估計(jì)以后每個(gè)月的產(chǎn)量,以這三個(gè)月的產(chǎn)品數(shù)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份x的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)y=a·bx+c(其中,a、b、c為常數(shù)).已知四月份該產(chǎn)品的產(chǎn)量為1.37萬(wàn)件,請(qǐng)問(wèn)用以上哪個(gè)函數(shù)作為模擬函數(shù)較好,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠今年1月、2月、3月生產(chǎn)某種產(chǎn)品的數(shù)量分別是1、1.2、1.3萬(wàn)件,為了估測(cè)以后每個(gè)月的產(chǎn)量,以這三個(gè)月的產(chǎn)品數(shù)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份x的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)y=abx+c(其中a,b,c為常數(shù)).已知4月份該產(chǎn)品的產(chǎn)量為1.37萬(wàn)件,請(qǐng)問(wèn)用以上哪個(gè)函數(shù)作為模擬函數(shù)較好,并說(shuō)明理由.

   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠今年1月、2月、3月生產(chǎn)某種產(chǎn)品的數(shù)量分別是1萬(wàn)件、1.2 萬(wàn)件、1.3 萬(wàn)件,為了估測(cè)以后每個(gè)月的產(chǎn)量,以這三個(gè)月的產(chǎn)品數(shù)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量與月份x的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)(其中為常數(shù))已知4月份該產(chǎn)品的產(chǎn)量為1.37萬(wàn)件, 請(qǐng)問(wèn)用以上哪個(gè)函數(shù)作為模擬函數(shù)較好,并說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案